期刊文献+

MEA优化BP神经网络的电主轴热误差分析研究 被引量:11

Thermal Error Analysis Based on MEA Optimized BP Neural Network for Motorized Spindle
下载PDF
导出
摘要 针对磨齿机在磨削加工时,电主轴存在热致误差等问题,提出一种基于思维进化算法(MEA)优化BP神经网络建立磨齿机电主轴热误差预测模型的方法。通过测量磨齿机电主轴在加工过程中的温升与位移情况,利用思维进化算法优化BP神经网络算法在MATLAB软件中建立预测模型,并与未经过算法优化的BP神经网络建立的模型进行了对比。在电主轴X向热误差预测实验中,未经过算法优化的BP模型最低补偿率为84.85%,而经过思维进化算法优化BP模型最低补偿率为95.29%。结果表明:经过思维进化算法优化BP神经网络建立的热误差模型,在拟合和预测精度上要优于未经过算法优化的BP神经网络热误差模型。 To improve the problem of heat induced error of motorized spindle in grinding machine,a method based on mind evolution algorithm(MEA) to optimize BP neural network to establish the thermal error compensation model of grinding machine motorized spindle was proposed. By measuring temperature and displacement of the grinding machine motorized spindle in the process of machining,the MEA was used to optimize the BP neural network algorithm to build a predictive model in MATLAB software,and the model was compared with the BP neural network which has not been optimized. In the X direction of motorized spindle thermal error prediction experiment,the minimum compensation rate of the BP model without the algorithm optimization was 84. 85%,and the minimum compensation rate of the optimized BP model was 95. 29%. The results show that the thermal error model of BP neural network which optimized by the mind evolution algorithm is superior to the BP neural network thermal error model without algorithm optimization in the fitting and forecasting accuracy.
出处 《组合机床与自动化加工技术》 北大核心 2017年第6期1-4,共4页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金项目(51635003)
关键词 热误差 电主轴 思维进化算法 BP神经网络 thermal error motorized spindle mind evolutionary algorithm BP network model
  • 相关文献

参考文献7

二级参考文献105

  • 1徐庚福,郑岳.机床热平衡时间评定指标探讨[J].上海机床,1989(3):56-60. 被引量:1
  • 2杨建国,张宏韬,童恒超,曹洪涛,任永强.数控机床热误差实时补偿应用[J].上海交通大学学报,2005,39(9):1389-1392. 被引量:53
  • 3李永祥,童恒超,曹洪涛,张宏韬,杨建国.数控机床热误差的时序分析法建模及其应用[J].四川大学学报(工程科学版),2006,38(2):74-78. 被引量:38
  • 4Bryan J B. International status of thermal error research [ J ]. CIRP Annals-Manufacturing Technology, 1990,39 ( 2 ) : 645 - 656. 被引量:1
  • 5Ni J. CNC machine accuracy enhancement through real-time error compensation[J]. Journal of Manufacturing Science and Engi- neering, 1997,119(4B) :717 -725. 被引量:1
  • 6Pahk H J, Lee S W. Thermal error measurement and real time compensation system for the CNC machine tools incorporating the spindle thermal error and the feed axis thermal error [ J ]. Inter- national Journal of Machine Tools and Manufacture, 2002, 20:487 - 494. 被引量:1
  • 7Zhu J. Robust Thermal Error Modeling and Compensation for CNC Machine Tools [ D]. The University of Michigan, 2008. 被引量:1
  • 8Chen J S, Yuan J X, Ni J, et al. Real-time compensation for time-variant volumetric error on a machining center[ J]. Journal of Engineering for Industry, 1993,115 (4) :472 - 479. 被引量:1
  • 9Donmez M A, Blomquist D S, Hocken R J, et al. A general meth- odology for machine tool accuracy enhancement by error compensa- tion [ J ]. Precision Engineering, 1986,8 (4) : 187 - 196. 被引量:1
  • 10Lee J H, Yang S H. Thermal error modeling of a horizontal machi- ning center using fuzzy logic strategy [ J ]. Journal of Manufacturing Processes, 2001,3(2) :120 - 127. 被引量:1

共引文献118

同被引文献123

引证文献11

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部