期刊文献+

基于多元自回归模型的电主轴热误差建模与预测 被引量:12

Thermal Error Modeling and Forecasting Based on Multivariate Autoregressive Model for Motorized Spindle
下载PDF
导出
摘要 为了减少电主轴的热误差,提高数控机床的加工精度,考虑热变形不仅与自身若干期的滞后值有关,还与当前温升及其滞后值有关,提出采用多元自回归方法建立电主轴热误差模型。首先将观测序列进行差分处理,剔除线性趋势项,然后利用Akaike判据获得自回归模型的阶数,用最小二乘法求得自回归模型的系数,最后用建立的自回归模型预测电主轴热误差,并通过试验验证该模型的有效性。试验结果表明基于位移的热误差自回归模型比基于温度的热误差多元线性回归模型有更好的精度。 In order to reduce the thermal error of the motorized spindle and improve the manufacturing accuracy of NC machine tool, the thermal error model based on multivariate autoregressive method is proposed. This model con- siders not only the relationship between thermal deformation and its lagged value but also the relationship between thermal deformation and the present and lagged value of temperature rise. The linear trends of observed series are eliminated by numerical difference. The order of multivariate autoregressive (MVAR) model is adopted by using Akaike information criterion. The coefficients of the MVAR model are determined by the least square method. The established MVAR model is then used to forecast the thermal error and the experiments have shown the validity and robustness of this model. The results indicate that the displacement-based thermal error autoregressive model has much better accuracy than the temperature-based multiple linear regression model.
出处 《机械科学与技术》 CSCD 北大核心 2012年第9期1526-1529,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 国家科技重大专项项目(2009ZX04001-015) 甘肃省自然科学基金项目(1010RJZA043)资助
关键词 热误差 多元自回归模型 电主轴 预测 thermal error multivariate autoregressive model motorized spindle forecasting
  • 相关文献

参考文献11

  • 1Bryan J B. International status of thermal error research [ J ]. CIRP Annals-Manufacturing Technology, 1990,39 ( 2 ) : 645 - 656. 被引量:1
  • 2Ni J. CNC machine accuracy enhancement through real-time error compensation[J]. Journal of Manufacturing Science and Engi- neering, 1997,119(4B) :717 -725. 被引量:1
  • 3Pahk H J, Lee S W. Thermal error measurement and real time compensation system for the CNC machine tools incorporating the spindle thermal error and the feed axis thermal error [ J ]. Inter- national Journal of Machine Tools and Manufacture, 2002, 20:487 - 494. 被引量:1
  • 4Zhu J. Robust Thermal Error Modeling and Compensation for CNC Machine Tools [ D]. The University of Michigan, 2008. 被引量:1
  • 5Chen J S, Yuan J X, Ni J, et al. Real-time compensation for time-variant volumetric error on a machining center[ J]. Journal of Engineering for Industry, 1993,115 (4) :472 - 479. 被引量:1
  • 6Donmez M A, Blomquist D S, Hocken R J, et al. A general meth- odology for machine tool accuracy enhancement by error compensa- tion [ J ]. Precision Engineering, 1986,8 (4) : 187 - 196. 被引量:1
  • 7Lee J H, Yang S H. Thermal error modeling of a horizontal machi- ning center using fuzzy logic strategy [ J ]. Journal of Manufacturing Processes, 2001,3(2) :120 - 127. 被引量:1
  • 8Lei C L, Rui Z Y. Thermal error modeling and compensating of motorized spindle based on improved neural network [ J ]. Ad- vanced Materials Research, 2010,129 - 131:556 - 560. 被引量:1
  • 9吴昊,杨建国,张宏韬,王秀山.精密车削中心热误差鲁棒建模与实时补偿[J].上海交通大学学报,2008,42(7):1064-1067. 被引量:11
  • 10曾小军,黄宜坚.基于AR模型和支持向量机的故障诊断法[J].机械科学与技术,2010,29(7):972-975. 被引量:14

二级参考文献18

  • 1彭志君,黄宜坚.基于AR双谱的溢流阀故障诊断[J].机械科学与技术,2007,26(7):908-912. 被引量:9
  • 2Matthias P, Stefan O, Manfred G. Support vector approaches for engine knock detection [A ]. Neural Networks. Internalional Joint Conference on Neural Network[C], Washington:IEEE- Press, 1999:969-974. 被引量:1
  • 3Corinna C, Vapnik V. Support-vector network [ J]. Machine Learning, 1995,20:273 -297. 被引量:1
  • 4Steve R G. Support Vector Machine for Classification and Regression[ R]. Technical Report, Southampton: University of Southampton, 1998 : 1 -28. 被引量:1
  • 5Walsh D, Ddaney P A. Detection of transient signals in mulfipath environments[J]. IEEE Journal of Oceanic Engineertug, 1995,20(2) :133 - 138. 被引量:1
  • 6Steve R Gunn. Support VectorMachines for Classication and Regression[R]. Southampton:University of Southampton, 1998 : 1 ~ 28. 被引量:1
  • 7闻新 周露 王丹力 熊晓英.MATLAB神经网络应用设计[M].北京:科学出版社,2002.. 被引量:81
  • 8Weck M. Mckeown P, Bonse R. Reduction and compensation of thermal error in machine tools [J]. Annals of the CIRP, 1995, 44(2): 589-598. 被引量:1
  • 9Yang S, Yuan J, Ni J. Accuracy enhancement of a horizontal machining center by real time compensation [J]. Journal of Manufacturing Systems, 1996, 15(2) : 113-124. 被引量:1
  • 10Holland J H. Adaptation in natural and artificial sys tems [M]. MI: University of Michigan Press, Ann Arbor, 1975. 被引量:1

共引文献23

同被引文献150

引证文献12

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部