期刊文献+

基于改进径向基神经网络的船舶设备故障诊断方法 被引量:4

Ships Equipment Fault Diagnosis Method Based on Improved Radical Basis Function Neural Network
下载PDF
导出
摘要 针对目前船舶设备故障诊断方法存在适用性不广、准确度不高等问题,引入径向基神经网络船舶设备故障诊断方法。提出一种基于反向学习和自适应搜索策略结合的改进人工蜂群算法,通过反向学习策略进行蜜源初始化,提高初始解的质量,并在迭代过程中自适应调整搜索步长,提升原算法的收敛性能和局部寻优能力。将该算法与径向基神经网络的参数寻优相结合,构造性能良好的故障诊断分类器。实验结果表明,该方法有效提高了故障诊断的准确性和适用性,满足船舶设备故障诊断的实时性能要求。 For the ships equipment fault diagnosis problems with lack of applicability and accuracy during ships sailing, this pa- per designs a radical basis function neural network method for ships equipment fault diagnosis. An improved artificial bee colony (IABC) algorithm combining opposite learning initialization strategy and auto-adapted search strategy is designed, which builds higher quality initial solution space through opposite learning initialization strategy and adapts its local search length automatically to improve the ability of convergence and local optimization searching. IABC algorithm is used in parameter optimization of radical basis function neural network (RBFNN) for constructing a better performed classifier. The results show that the IABC-RBFNN framework can improve the accuracy and usability of ship fault diagnosis, and satisfy the real-time requirement of ships equipment fault diagnosis.
出处 《计算机与现代化》 2017年第6期8-14,19,共8页 Computer and Modernization
基金 江苏省产学研联合创新资金资助项目(SBY201320423)
关键词 船舶设备故障诊断 径向基神经网络 人工蜂群算法 反向学习策略 自适应策略 ship equipment fault diagnosis radical basis function neural network artificial bee colony algorithm opposite learn- ing strategy auto-adapted strategy
  • 相关文献

参考文献5

二级参考文献39

  • 1黄强,宋士华,丁志华,刘鑫.基于振动分析的柴油机故障程度的研究[J].华中科技大学学报(自然科学版),2007,35(6):105-107. 被引量:6
  • 2Bechhoefer,E.,Mayhew,E.,Mechanical Diagnostics System Engineering in IMD-HUMS, IEEE Aerospace[ J ].Big Sky, 2006. 被引量:1
  • 3Bechhoefer, E., Bernhard, A., Use of Non-Gaussian Distribution for Analysis of Shaft Components, IEEE Aerospace[J ].Big Sky, 2006. 被引量:1
  • 4Dong,M.,He,D.,Hidden Semi-Markov Models for Machinery Health Diagnosis and Prognosis Transactions of NAMRI/SME,2004(32). 被引量:1
  • 5CHEN Yong,WANG Guo-yin,JIN Fan,etal.A novel generalized congruence neural network s [C]//Proc of the 2nd International Symposium on Neural Networks.2005:455--460. 被引量:1
  • 6YING Yulong, CAO Yunpeng, LI shuying, et al.Nonlinear steady-state model based gas turbinehealth status estimation approach with improvedparticle swarm optimization algorithm [J]. MathematicalProblems in Engineering,2015 : 940757. 被引量:1
  • 7WANG C C,KAN G Y,SHEN P C ,et al. Applicationsof fault diagnosis in rotating machinery byusing time series analysis with neural network[J],Expert Systems with Applications,2 0 1 0 ,37: 1696-1702. 被引量:1
  • 8SAMANTA B,A1-BALUSHI K R. Artificial neuralnetwork based fault diagnostics of rolling elementbearings using time-domain features[J]. MechanicalSystems and Signal Processing, 2003, 17 ( 2 ) :317-328. 被引量:1
  • 9JAY ASW AL P , VERMA S N’ WADHWANI A K.Development of EBP-artificial neural network expertsystem for rolling element bearing fault diagnosis[J]. Journal of Vibration & Control, 2 0 1 1,1 7(8) : 1131-1148. 被引量:1
  • 10Dong S , Xu X , Liu J , et al. Rotating machine faultdiagnosis based on locality preserving projectionand back propagation neural network-support vectormachine model [J]. Measurement and Control,2 015,48(7 ) : 211-216. 被引量:1

共引文献4

同被引文献8

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部