期刊文献+

基于振动分析的柴油机故障程度的研究 被引量:6

Analysis of faults grades of diesel engines using vibration signals
下载PDF
导出
摘要 利用神经网络诊断模型来识别故障发展的不同程度,并以柴油机连杆铜套磨损故障为例进行分析.首先在295柴油机上进行了设定及待定工况实验,获取各工况下的缸盖振动信号;然后利用基于神经网络和小波分析的故障诊断方法进行故障程度识别;最后利用训练后的模型对待定工况进行故障程度的判定.实验和仿真结果表明:对于各设定工况,诊断模型可以定量地识别出来,准确率达到100%;对于待定工况,诊断模型也可以给出定量的故障程度描述.从而使操作者能及时了解故障的发展情况,并根据网络模型的定量输出结果对故障部件进行相应的维修或更换处理. Different faults grade were identified by the diagnosis model of neural networks based on faults of the bushing of connecting rods on the diesel engine. The experiments of the setting and pending status were set to measure the vibration signals on the cylinder head. Then the fault diagnosis method based on the neural networks and wavelet analysis was used to identify different grades. At last, the pending status is estimated by the training model. According to the experiment and simulation result, for the setting status, diagnosis model can identify different grades quantificationally and accurately. For the pending status, the model also can describe the quantificational fault grades. So the operator can know the development of faults in time and maintain or change the parts by the output of network model.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第6期105-107,共3页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
关键词 柴油机 故障程度 振动分析 神经网络 diesel engine fault grade vibration analysis neural network
  • 相关文献

参考文献9

  • 1黄强..神经网络技术在柴油机故障诊断与控制中应用的研究[D].华中科技大学,2003:
  • 2黄强,高世伦,宾鸿赞,刘永长.基于分形和神经网络的柴油机振动诊断方法[J].华中科技大学学报(自然科学版),2005,33(9):68-70. 被引量:7
  • 3Mesbahi E.An intelligent sensor validation and fault diagnostic technique for diesel engines[J].ASME Journal of Dynamic Systems,Measurement and Control,2001,123:141-144. 被引量:1
  • 4Yang Bo-Suk,Kim K J.Application of dempster-shafer theory in fault diagnosis of induction motors using vibration and current signals[J].Mechanical Systems and Signal Processing,2006,20(2):403-420. 被引量:1
  • 5Wu Jian-Da,Chuang Chao-Qin.Fault diagnosis of internal combustion engines using visual dot patterns of acoustic and vibration signals[J].NDT & E International,2005,38(8):605-614. 被引量:1
  • 6Picoux B,Houédec D Le.Diagnosis and prediction of vibration from railway trains[J].Soil Dynamics and Earthquake Engineering,2005,25(12):905-921. 被引量:1
  • 7Yan Ruqiang,Gao R X.An efficient approach to machine health diagnosis based on harmonic wavelet packet transform[J].Robotics and Computer-Integrated Manufacturing,2005,21(4-5):291-301. 被引量:1
  • 8Liu B.Selection of wavelet packet basis for rotating machinery fault diagnosis[J].Journal of Sound and Vibration,2005,284(3-5):567-582. 被引量:1
  • 9Zhang S,Mathew J,Ma L,et al.Best basis-based intelligent machine fault diagnosis[J].Mechanical Systems and Signal Processing,2005,19(2):357-370. 被引量:1

二级参考文献3

共引文献6

同被引文献21

  • 1闵华松,刘光临.高速旋转机械嵌入式状态监测与故障诊断系统研究[J].信息与控制,2006,35(3):309-313. 被引量:5
  • 2Bechhoefer, E. , Mayhew, E. ,"Mechanical Diagnostics System Engineering in IMD - HUMS", IEEE Aerospace, Big Sky, March 2006. 被引量:1
  • 3Murphy, K. , Hidden Semi - Markov Models, www. cs. ubc. ca/- murphyk/Software/index, html, November 2002. 被引量:1
  • 4Dong, M. , He, D. ," Hidden Semi -Markov Models for Machinery Health Diagnosis and Prognosis" Transactions of NAMRI/SME, Vol 32, 2004. 被引量:1
  • 5Bechhoefer, E., Bernhard, A., "'Use of Non- Gaussian Distribution for Analysis of Shaft Components", IEEE Aero-space, Big Sky, March 2006. 被引量:1
  • 6Chung L, Subramanian N. Architecture-Based Semantic Evolution: a Study of Remotely Controlled Embedded Systems. Proceedings of the IEEE International Conference on Software Maintenance. Los Alamitos, CA, USA: IEEE Computer Society, 2001: 663-666. 被引量:1
  • 7Lee C T, Rong Z W, Lin J M. Linux Kernel Customization for Embedded Systems by Using Call Graph Approach. Proceedings of the Asia and South Pacific Design Automation Conference. Kitakyushu, Japan, 2003: 689-692. 被引量:1
  • 8Discenzo F M, Unsworth P J, Loparo K A, et al. Serf-Diagnosing Intelligent Motors: a Key Enabler for Next Generation Manufacturing Systems. Computing & Control Engineering Journal, 2000(5): 228-233. 被引量:1
  • 9Hoonbin Hong,Ming Liang. Fault Severity Assessment for Rolling Element Bearings Using the Lempel - Ziv Complexity and Continuous Wavelet Transform [J]. Journal of Sound and Vibration, 2009,320(2) :452 - 468. 被引量:1
  • 10Dong M,He D.Hidden semi-Markov models for machinery health diagnosis and prognosis[J].Transactions of the North American Manufacturing Research Institution/SME,2004,32:199-206. 被引量:1

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部