期刊文献+

外电场对H_2O分子在FeN_3-G催化剂上吸附的影响

Adsorption of H_2O Molecule on the Surface of FeN_3-G Under an External Electric Field
下载PDF
导出
摘要 采用密度泛函理论的方法研究了外电场对H2O分子在Fe N3-G上吸附的影响。计算结果表明:随着外加正电场的逐渐增强,H2O分子和Fe N3-G表面之间的相互作用力增强,吸附能越负,H2O分子与表面之间的距离减小。相反,随着负电场的逐渐增强,H2O分子和Fe N3-G表面之间的相互作用力减弱,吸附能越正,H2O分子与表面之间的距离增大。可见,外电场对H2O分子在Fe N3-G表面上的吸附行为有很大的影响。因此,外电场可以为调节H2O分子在金属-石墨烯催化剂上的吸附提供一个新的途径,并且未来有可能在催化剂的催化活性及应用前景上产生积极的影响。 The effect of the external electric field on the interaction between H2O and FeN3 center embedded in gra- phene layer ( FeN3-G) is studied using density functional theory (DFT) calculations. The results show that the in- teraction of water molecule and FeN3-G surface is enhanced and the adsorption energy is also increased. In addi- tion, the distance between the water molecule and the surface becomes short with the gradual increase of the positive electric field. However, the interaction of water molecule and FeN3-G surface is decreased with the negative adsorption energy, the distance between the water molecule and the surface becomes long with the enhancement of the negative electric field. Obviously, external electric field has a great influence on the adsorption behavior of wa- ter molecule on the surface of FeN3-G. Therefore, the external electric field can provide a new avenue to tune the H2O adsorption process onto metal-doped graphene substrate, and may have a positive impact on the catalytic ac- tivity of catalysts and the application prospect in the future.
出处 《太原科技大学学报》 2016年第5期412-418,共7页 Journal of Taiyuan University of Science and Technology
基金 山西省自然科学基金(2013011014-5) 太原科技大学基金(201380 H201203) 博士基金(KDHY2012-002)
关键词 外电场 FeN3-G催化剂 H2O分子 密度泛函理论 吸附 external electric field, FeN3-G catalyst, H2O molecule, density functional theory, adsorption energy
  • 相关文献

参考文献1

二级参考文献19

  • 1贾斌, 刘志华, 李小明, 杨永林, 杨麒, 曾光明, 刘医璘, 刘倩倩, 郑施雯. 环境科学, 2009, 30(4), 1228—1231. 被引量:1
  • 2Zhao F., Harnisch F., Schrder U., Scholz F., Bogdanoff P., Herrmann I., Electrochem. Commun., 2005, 7(12), 1405—1410. 被引量:1
  • 3Tang L. H., Wang Y., Li Y. M., Feng H. B., Lu J., Li J. H., Adv. Funct. Mater., 2009, 19(17), 2782—2789. 被引量:1
  • 4Chen D., Tang L. H., Li J. H., Chem. Soc. Rev., 2010, 39(8), 3157—3180. 被引量:1
  • 5Wang Y., Shao Y. Y., Matson D. W., Li J. H., Lin Y. H., ACS Nano, 2010, 4(4), 1790—1798. 被引量:1
  • 6Qu L. T., Liu Y.,Baek J., Dai L. M., ACS Nano, 2010, 4(3), 1321—1326. 被引量:1
  • 7Wei D. C., Liu Y. Q., Wang Y., Zhang H. L., Huang L. P., Yu G., Nano Lett., 2009, 9(5), 1752—1758. 被引量:1
  • 8Reddy A. L. M., Srivastava A., Gowda S. R., Gullapalli H., Dubey M., Ajayan P. M., ACS Nano, 2010, 4(11), 6337—6342. 被引量:1
  • 9Wang X. R., Li X. L., Zhang L., Yoon Y., Weber P. K., Wang H. L., Guo J., Dai H. J., Science, 2009, 324, 768—771. 被引量:1
  • 10Jin Z., Yao J., Kittrell C., Tour J. M., ACS Nano, 2011, 5(5), 4112—4117. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部