期刊文献+

氮掺杂石墨烯的一步法低温合成及用作微生物燃料电池阴极催化剂的产电特性 被引量:9

One-pot Low-temperature Synthesis of Nitrogen-doped Graphene and It Application as Cathode Catalyst in Microbial Fuel Cells for Electricity Generation
下载PDF
导出
摘要 利用爆炸法低温合成了氮掺杂石墨烯(NG),并通过高分辨透射电子显微镜、X射线光电子能谱仪、Raman光谱仪以及X射线衍射仪对其进行了表征.电化学性能检测结果表明,所合成的NG在中性磷酸盐电解液中具有优异的氧还原催化活性,完全能够与贵重金属铂催化剂(Pt/C)相媲美,氧还原催化稳定性甚至优于Pt/C.当NG用作微生物燃料电池(MFCs)的阴极氧还原催化剂时,在外阻为1000Ω情况下,MFCs的最大功率密度为1345 mW/m2,产电稳定性优于以Pt/C为阴极催化剂的MFCs,可以成为Pt催化剂的理想替代品. Nitrogen-doped graphene ( NG ) was synthesized by denotation process at low temperature, and characterized by high-resolution transmission electron microscopy( HRTEM) , X-ray photoelectron spectrometry ( XPS) , Raman spectrometry and X-ray diffraction( XRD) . Electrochemical examinations demonstrated that in the neutral phosphate electrolyte the synthesized NG had an excellent electrocatalytic activity for oxygen reduc-tion reaction( ORR) , comparable to that of platinum catalyst( Pt/C) , and its electrocatalytic stability was even better than Pt/C. When NG was used as cathode catalyst in single-chamber microbial fuel cells( MFCs) , the maximal power density at external resistance of 1000 was 1345 mW/m2 , and the stability of power genera-tion in MFCs even outperformed that with Pt/C as cathode catalyst, indicating that NG might be a perfect al-ternative to Pt catalyst in MFCs.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2014年第4期825-830,共6页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:51108332) 江苏省自然科学基金(批准号:BK2011416)资助~~
关键词 微生物燃料电池 氧还原反应 氮掺杂石墨烯 阴极催化剂 Microbial fuel cell Oxygen reduction reaction Nitrogen-doped graphene Cathode catalyst
  • 相关文献

参考文献19

  • 1贾斌, 刘志华, 李小明, 杨永林, 杨麒, 曾光明, 刘医璘, 刘倩倩, 郑施雯. 环境科学, 2009, 30(4), 1228—1231. 被引量:1
  • 2Zhao F., Harnisch F., Schrder U., Scholz F., Bogdanoff P., Herrmann I., Electrochem. Commun., 2005, 7(12), 1405—1410. 被引量:1
  • 3Tang L. H., Wang Y., Li Y. M., Feng H. B., Lu J., Li J. H., Adv. Funct. Mater., 2009, 19(17), 2782—2789. 被引量:1
  • 4Chen D., Tang L. H., Li J. H., Chem. Soc. Rev., 2010, 39(8), 3157—3180. 被引量:1
  • 5Wang Y., Shao Y. Y., Matson D. W., Li J. H., Lin Y. H., ACS Nano, 2010, 4(4), 1790—1798. 被引量:1
  • 6Qu L. T., Liu Y.,Baek J., Dai L. M., ACS Nano, 2010, 4(3), 1321—1326. 被引量:1
  • 7Wei D. C., Liu Y. Q., Wang Y., Zhang H. L., Huang L. P., Yu G., Nano Lett., 2009, 9(5), 1752—1758. 被引量:1
  • 8Reddy A. L. M., Srivastava A., Gowda S. R., Gullapalli H., Dubey M., Ajayan P. M., ACS Nano, 2010, 4(11), 6337—6342. 被引量:1
  • 9Wang X. R., Li X. L., Zhang L., Yoon Y., Weber P. K., Wang H. L., Guo J., Dai H. J., Science, 2009, 324, 768—771. 被引量:1
  • 10Jin Z., Yao J., Kittrell C., Tour J. M., ACS Nano, 2011, 5(5), 4112—4117. 被引量:1

同被引文献91

引证文献9

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部