摘要
大数据环境下,从海量学习资源中为学习者提供个性化的资源推荐服务可提高学习效率。考虑到不同区域的人具有不同的文化背景,人们对事物的喜好具有区域性,以及提供个性化推荐通常面临数据稀疏和冷启动的问题,提出使用因子分解机,综合考虑学习者的知识基础、兴趣、文化和时间因素,借助学习者所处区域的文化背景,选出与其有相同或相似文化背景的学习者,并结合学习者最佳学习时间及学习体系结构,以提高个性化学习资源推荐的质量。实验结果表明,该方法在一定程度上提高了推荐准确率。
出处
《软件导刊》
2017年第6期63-65,共3页
Software Guide
基金
广西高等教育本科教学改革工程项目(2015JGB357)
河池学院教改课题(2014EB001)