期刊文献+

融合文化和时间的学习资源推荐研究

下载PDF
导出
摘要 大数据环境下,从海量学习资源中为学习者提供个性化的资源推荐服务可提高学习效率。考虑到不同区域的人具有不同的文化背景,人们对事物的喜好具有区域性,以及提供个性化推荐通常面临数据稀疏和冷启动的问题,提出使用因子分解机,综合考虑学习者的知识基础、兴趣、文化和时间因素,借助学习者所处区域的文化背景,选出与其有相同或相似文化背景的学习者,并结合学习者最佳学习时间及学习体系结构,以提高个性化学习资源推荐的质量。实验结果表明,该方法在一定程度上提高了推荐准确率。
出处 《软件导刊》 2017年第6期63-65,共3页 Software Guide
基金 广西高等教育本科教学改革工程项目(2015JGB357) 河池学院教改课题(2014EB001)
  • 相关文献

参考文献7

二级参考文献64

  • 1赵兴龙,杨开城.论课程本体[J].中国电化教育,2006(12):5-9. 被引量:7
  • 2Chen Annie. Context-aware collaborative filtering system: predicting the user's preference in the ubiquitous compu- ting environment [ J]. Lecture Notes in Computer Science, 2005, 3479: 244-253. 被引量:1
  • 3Liu Fengkun, Lee H J. Use of social network information to enhance collaborative filtering performance [ J]. Ex- pert Systems with Applications, 2010, 37 (7) : 4772- 4778. 被引量:1
  • 4Yang Shuanghong, Long Bo, Smola A, et al. Like like a- like: joint friendship and interest propagation in social networks[ C]//Proceedings of the 20^th International Con- ference on World Wide Web. Bangalore India: ACM, 2011 : 537-546. 被引量:1
  • 5Hasan S, Zhan Xianyuan, Ukkusuri S V. Understanding urban human activity and mobility patterns using large- scale location-based data from online social media[ C ]// Proceedings of the 2^nd ACM SIGKDD International Work- shop on Urban Computing. Chicago USA: ACM, 2013: 1-8. 被引量:1
  • 6Ying Josh Jia-Ching, Lee W C, Ye Mao. User association analysis of locales on location based social networks [ C]/// Proceedings of the 3^rd ACM SIGSPATIAL Interna- tional Workshop on Location Based Social Networks. Chicago USA: ACM, 2011 : 69-76. 被引量:1
  • 7Yuan Quan, Cong Gao, Ma Zongyang. Time-aware point- of-interest recommendation [ C ]// Proceedings of the 36^th International ACM SIGIR Conference on Research and Development in Information Retrieval. Dublin Ireland: ACM, 2013 : 363-372. 被引量:1
  • 8Zheng Ning, Jin Xiaoming, Li Lianghao. Cross-region collaborative filtering for new point-of-interest recommen- dation [ C ]//Proceedings of the 22^nd International Confer- ence on World Wide Web Companion. Seoul Korea: [ s. n. ], 2013:45-46. 被引量:1
  • 9ADOMAVICIUS G, TUZHAILIN A. Toward the next generation of recommender systems : a survey of the state-of-the-art and possible extensions[ J ]. Knowledge and Data Engineering, IEEE Transactions on, 2005, 17 (6) :734-749. 被引量:1
  • 10GOLDBERG D, Nichols D, OKI B M, et al. Using collaborative filtering to weave an information tapestry [ J ]. Communica- tions of the ACM, 1992, 35(12) :61-70. 被引量:1

共引文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部