期刊文献+

一种改进的组稀疏表示图像去噪方法 被引量:3

An Improved GSR Image Denoising Method
下载PDF
导出
摘要 研究了一种匹配梯度分布的组稀疏表示图像去噪模型,将相似图像块构成的结构组作为稀疏表示单元并加入梯度直方图保持正则项匹配梯度分布,基于非精确增广拉格朗日乘子法进行求解得到恢复图像.仿真实验结果表明,该方法不仅可以减少图像处理的时间并可在有效去除噪声的同时保持图像精细纹理结构,获得了较高的峰值信噪比和结构相似性索引测度.在需要得到图像丰富细节的情况下,该方法具有实用价值和现实意义. A matching gradient distribution group based sparse representation model is researched, in which the basic unit of sparse representation is the group composed by nonlocal patches with similar structures, simultaneously the gradient histogram preserving regularization is added to match gradient distribution, and imprecise Augmented Lagrange multiplier method is used to solve the model. It is well shown by the results that this method can not only shorten the time of image processing, but also retain the fine or small-scale texture structure as well as denoising effectively, and obtain higher output PSNR and SSIM than some current state-of-the-art schemes. In case of the rich details of the image is needed, this method has practical value and realistic significance.
出处 《微电子学与计算机》 CSCD 北大核心 2017年第6期99-103,共5页 Microelectronics & Computer
基金 国家自然科学基金(61203245) 河北省自然科学基金(F2012202027)
关键词 图像去噪 稀疏表示 相似性 纹理 image denoising sparse representation similarity texture
  • 相关文献

参考文献1

二级参考文献12

  • 1I,i R D, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J].Physica D: Nonlin- ear Pheonomena, 1992,60( 1 ) :259 -268. 被引量:1
  • 2Li R D, Osher S. Total variation based image restoration with free local constraints[ C ]// IEEE International Conference Proceedings on Image Processing, 1994. Austin, TX, USA;1994:1:31-35. 被引量:1
  • 3Chambolle A. An algorithm for total variation minimiza- tion and applications [ J ]. Journal of Mathematical Ima- ging and Vision, 2004, 20( 1 -2): 89-97. 被引量:1
  • 4Unger M, Pock T, Bischof H. Continuous globally opti- mal image segmentation with local constraints [ C ]//Proceedings on Computer Vision Winter Workshop 2008. 2008. 被引量:1
  • 5Le T, Chartrand R, Asaki T J. A variational approach to reconstructing images corrupted by Poisson noise[J].Journal of Mathematical Imaging and Vision, 2007, 27 (3) :257 -263. 被引量:1
  • 6Green M L. Statistics of images, the TV algorithm of ru- din-osher-fatemi for image denoising and an improved denoising algorithm[ R]. Los Angeles: UCLA ,2002. 被引量:1
  • 7Lin Y, Wohlberg B, Guo H. UPRE method for total vari- ation parameter selection [ J ]. Signal Processing, 2010, 90(8) :2546 -2551. 被引量:1
  • 8Chan T F, Osher S, Shen J. The digital TV filter and nonlinear denoising[J].IEEE Transactions on Image Processing,2001 , 10 ( 2 ) : 231 - 241. 被引量:1
  • 9Babacan S D, Molina R, Katsaggelos A K. Parameter es- timation in TV image restoration using variational distribu- tion approximation[J]. IEEE Transactions on hnage Pro- cessing, 2008,17(3) : 326 - 339. 被引量:1
  • 10Gilboa G, Sochen N, Zeevi Y Y. Estimation of optimal PDE-based denoising in the SNR sense[J].IEEE Trans- actions on Image Processing, 2006,15( 8 ) : 2269 -2280. 被引量:1

共引文献2

同被引文献20

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部