期刊文献+

基于混沌序列的压缩感知语音增强算法 被引量:5

Compressed Sensing Speech Enhancement Algorithm Based on Chaotic Sequences
下载PDF
导出
摘要 利用语音在离散余弦变换域下的稀疏性,提出一种将混沌序列和符号函数相结合的观测矩阵,该观测矩阵具有良好的伪随机性,实现了确定性和随机性的统一.首先将带噪的语音信号在DCT域进行稀疏,然后利用提出的观测矩阵进行观测,以保留大部分语音特性,最后在原有重构算法基础上改进重构算法,以加快重构速度.此算法可以使重构语音信号的可懂度和清晰度得到大幅提升,实现了语音增强. In this paper, present a kind of observation matrix which combines the chaotic sequence with the sign function, which has good pseudo randomness. Firstly, the noisy speech signal is sparse in the DCT domain, then the observation matrix is used to preserve most of the speech features, finally based on the original reconstruction algorithm, this paper improves the reconstruction algorithm to speed up the reconstruction. The algorithm proposed in this paper makes the intelligibility and clarity of reconstructed speech signal be greatly improved, and the speech enhancement is realized.
出处 《微电子学与计算机》 CSCD 北大核心 2018年第1期96-99,105,共5页 Microelectronics & Computer
基金 国家自然科学基金资助项目(61462017) 广西自然科学基金资助项目(2014GXNSFAA118353) 广西自动检测技术与仪器重点实验基金项目(YQ15110)
关键词 压缩感知 稀疏表示 混沌序列 信号重构 compressed sensing sparse representation chaotic sequence signal reconstruction
  • 相关文献

参考文献3

二级参考文献123

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121. 被引量:1
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383. 被引量:1
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998. 被引量:1
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999. 被引量:1
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664. 被引量:1
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501. 被引量:1
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91. 被引量:1
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09. 被引量:1
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415. 被引量:1

共引文献766

同被引文献42

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部