期刊文献+

一种基于SDN的CCN集中控制缓存决策方法 被引量:2

A method of CCN centralized control cache decision based on SDN
下载PDF
导出
摘要 在软件定义网络(SDN)和内容中心网络(CCN)融合架构下,为了充分利用控制层对网络拓扑和缓存资源的全局感知,在全网中实现缓存资源的优化使用,提出了一种集中控制的缓存决策优化方案。在该方案中,应用粒子群优化算法(PSO)并且根据节点边缘度、节点重要度以及内容流行度对缓存资源和内容进行集中缓存决策,使得内容在不同的节点进行合理的缓存。仿真结果表明,通过评估缓存大小对缓存性能的影响,PSO缓存决策方法取得了比LCE、PROB缓存决策策略更优的缓存命中率和路径延展率,明显降低了缓存节点的缓存替换数,使得缓存达到了整体缓存优化。 In the soRware defined networking and content centric networking integration framework, a cache optimi- zation scheme of centralized control was proposed to make full use of global awareness of the control layer for net- work topology and cache resources, and achieve the optimal use of caching resources in the entire network. In this scheme, the particle swarm optimization (PSO) was applied for centralized cache decision-making depending on node edge degree, node importance degree and content popularity. Therefore, the contents were cached in different nodes reasonably. Simulation result shows that the proposed PSO caching scheme achieves larger cache hit rate and lower path stretch than that of LCE scheme, PROB scheme by evaluating the impact of cache size and content popularity on the caching performance. It also shows that PSO scheme significantly reduces the number of cache nodes to replace the cache, making the cache to achieve the overall cache optimization.
出处 《电信科学》 北大核心 2017年第5期12-20,共9页 Telecommunications Science
基金 国家自然科学基金资助项目(No.61371087 No.61531013) 教育部-中国移动科研基金资助项目(No.MCM20150102)~~
关键词 软件定义网络 内容中心网络 缓存 粒子群优化 节点边缘度 节点重要度 内容流行度 software defined networking, content centric networking, caching, particle swarm optimization, nodeedge degree, node importance degree, content popularity
  • 相关文献

参考文献4

二级参考文献125

  • 1Fukuyama Y.Fundamentals of particle swarm techniques [A].Lee K Y,El-Sharkawi M A.Modern Heuristic Optimization Techniques With Applications to Power Systems [M].IEEE Power Engineering Society,2002.45~51 被引量:1
  • 2Eberhart R C,Shi Y.Particle swarm optimization:developments,applications and resources [A].Proceedings of the IEEE Congress on Evolutionary Computation [C].Piscataway,NJ:IEEE Service Center,2001.81~86 被引量:1
  • 3van den Bergh F.An analysis of particle swarm optimizers [D].South Africa:Department of Computer Science,University of Pretoria,2002 被引量:1
  • 4Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm [A].Proceedings of the World Multiconference on Systemics,Cybernetics and Informatics [C].Piscataway,NJ:IEEE Service Center,1997.4104~4109 被引量:1
  • 5Yoshida H,Kawata K,Fukuyama Y,et al.A particle swarm optimization for reactive power and voltage control considering voltage stability [A].Proceedings of the International Conference on Intelligent System Application to Power System [C].Rio de Janeiro,Brazil,1999.117~121 被引量:1
  • 6Angeline P.Using selection to improve particle swarm optimization [A].Proceedings of IJCNN99[C].Washington,USA,1999.84~89 被引量:1
  • 7Shi Y,Eberhart R C.A modified particle swarm optimizer [R].IEEE International Conference of Evolutionary Computation,Anchorage,Alaska,May 1998 被引量:1
  • 8Shi Y,Eberhart R C.Empirical study of particle swarm optimization [A].Proceeding of Congress on Evolutionary Computation [C].:Piscataway,NJ:IEEE Service Center,1999.1945~1949 被引量:1
  • 9Shi Y,Eberhart R C.Fuzzy adaptive particle swarm optimization [A].Proceedings of the Congress on Evolutionary Computation[C].Seoul,Korea,2001 被引量:1
  • 10Lovbjerg M,Rasmussen T K,Krink T.Hybrid particle swarm optimiser with breeding and subpopulations [A].Proceedings of the Genetic and Evolutionary Computation Conference[C].San Francisco,USA,July 2001 被引量:1

共引文献465

同被引文献17

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部