摘要
In the present work, autonomous mobile robot(AMR) system is intended with basic behaviour, one is obstacle avoidance and the other is target seeking in various environments. The AMR is navigated using fuzzy logic, neural network and adaptive neurofuzzy inference system(ANFIS) controller with safe boundary algorithm. In this method of target seeking behaviour, the obstacle avoidance at every instant improves the performance of robot in navigation approach. The inputs to the controller are the signals from various sensors fixed at front face, left and right face of the AMR. The output signal from controller regulates the angular velocity of both front power wheels of the AMR. The shortest path is identified using fuzzy, neural network and ANFIS techniques with integrated safe boundary algorithm and the predicted results are validated with experimentation. The experimental result has proven that ANFIS with safe boundary algorithm yields better performance in navigation, in particular with curved/irregular obstacles.
In the present work, autonomous mobile robot(AMR) system is intended with basic behaviour, one is obstacle avoidance and the other is target seeking in various environments. The AMR is navigated using fuzzy logic, neural network and adaptive neurofuzzy inference system(ANFIS) controller with safe boundary algorithm. In this method of target seeking behaviour, the obstacle avoidance at every instant improves the performance of robot in navigation approach. The inputs to the controller are the signals from various sensors fixed at front face, left and right face of the AMR. The output signal from controller regulates the angular velocity of both front power wheels of the AMR. The shortest path is identified using fuzzy, neural network and ANFIS techniques with integrated safe boundary algorithm and the predicted results are validated with experimentation. The experimental result has proven that ANFIS with safe boundary algorithm yields better performance in navigation, in particular with curved/irregular obstacles.