摘要
为提高波达方向(DOA)角估计算法的运算速度,在分析了对称压缩谱(MSCS)算法利用构造共轭噪声子空间并对噪声子空间和共轭噪声子空间的交集进行奇异值分解,等效添加镜像辐射源思想的基础上,提出了构建MSCS算法的多项式,求解MSCS算法多项式根的方法。该算法保持了MSCS算法的镜像特性,并且不需要在半谱内进行遍历搜索,只需在半谱内进行求根处理即可。理论分析和仿真实验表明,该算法进一步提高了MSCS运算速度;相对于求根类MUSIC算法,该算法提高了DOA估计精度,从而证明了该算法的有效性。
To increase the computing speed of the angle of direction of arrival(DOA) estimation algorithm, on the bases of a nalysis of the MUSIC symmetric compression algorithm and on the basis of using the structure of conjugate noise subspace and intersection of the noise subspace and conjugate noise subspace for singular valve decomposition, equivalent to add image source ideas, this paper proposed the construction of polynomials of MSCS algorithm, which MSCS algorithm was polynomial roots. The algorithm kept the image characteristics of MSCS algorithm, and didn' t need to be carried out traversal search within the half spectrum, only needed to seek the root processing in a half spectrum. Theoretical analysis and simulation experiments show that the algorithm further improves the operation speed of the MSCS algorithm, with respect to the root MUSIC algorithm, the algorithm improves the DOA estimation accuracy, which proves the validity of the algorithm.
出处
《计算机应用研究》
CSCD
北大核心
2017年第6期1838-1841,共4页
Application Research of Computers
基金
国家自然科学基金资助项目(61372039)