期刊文献+

单基地MIMO雷达的非圆信号DOA估计 被引量:1

DOA estimation using non-circular signals for monostatic MIMO radar
下载PDF
导出
摘要 基于单基地MIMO雷达阵列信号模型,针对非圆信号波达方向(DOA)估计问题,提出了一种降维的非圆求根多重信号分类(MUSIC)方法。该方法对接收数据进行降维处理,去除其中冗余信息,在几乎不影响算法性能的情况下,降低计算复杂度;利用非圆信号特性,进行阵列扩展,提高数据利用率,增大阵列孔径,最大可估计信源数增加一倍;采用求根类的方法,避免谱峰搜索,进一步降低计算量。仿真结果表明,该方法计算效率高,测角精度、分辨力、最大可估计信源数等均优于传统算法。 A dimension-reduced multiple signal classification( MUSIC)-based DOA estimation method using polynomial rooting for non-circular sources is proposed,taking account of the direction of arrival( DOA) estimation for monostatic multiple-input multiple-output( MIMO) radar. A dimension-reduced operation,which reduces computation cost but has almost no harm to the performance of the algorithm,was done to the received data to remove redundancy; the maximum detectable number of targets was doubled after utilizing the non-circular characteristic of the signals to expand the virtual array aperture; polynomial rooting,which avoids peak searching,was applied to furthermore lower computation cost. Simulation results verify the computational efficiency of the method and its superiority in precision,resolution and maximum detectable number of targets over the traditional methods.
作者 李永潮 刁鸣
出处 《应用科技》 CAS 2016年第1期5-8,共4页 Applied Science and Technology
基金 中国博士后科学基金资助项目(3236310163)
关键词 阵列信号处理 波达方向 MIMO雷达 非圆信号 多项式求根 array signal processing direction of arrival MIMO radar non-circular signal polynomial rooting
  • 相关文献

参考文献13

  • 1FISHLER E, HAIMOVICH A, BLUM R, et al. MIMO ra- dar: an idea whose time has come [ C ]//Proceedings of the IEEE Radar Conference. Philadelphia, USA, 2004 : 71-78. 被引量:1
  • 2FISHLER E, HAIMOVICH A, BLUM R, et al. Performance of MIMO radar systems: advantages of angular diversity [C]//Proceedings of Conference Record of the 38th Asilo- mar Conference on Signals, Systems and Computers. PacificGrove, USA, 2004: 305-309. 被引量:1
  • 3XIA Wei, HE Zishu. Multiple-target localization and estima- tion of MIMO radars using Capon and APES techniques [ C]//Proeeedings of IEEE Radar Conference. Rome, Ita- ly, 2008 : 1-6. 被引量:1
  • 4DUOFANG C, BAIXIAO C, GUODONG Q. Angle estima- tion using ESPRIT in MIMO radar[J]. Electronics letters, 2008, 44(12) : 770-771. 被引量:1
  • 5GAO Xin, ZHANG Xiaofei, FENG Gaopeng, et al. On the MUSIC-derived approaches of angle estimation for bistatic MIMO radar [ C ]//Proceedings of International Conference on Wireless Networks and Information Systems. Shanghai, China, 2009: 343-346. 被引量:1
  • 6ZHANG Xiaofei, XU Lingyun, XU Lei, et al. Direction of departure (DOD) and direction of arrival (DOA) estima- tion in MIMO radar with reduced-dimension MUSIC [ J ]. IEEE communications letters, 2010, 14(12) : 1161-1163. 被引量:1
  • 7ZHENG Z D, ZHANG J Y. Fast method for multi-target lo- calisation in bistatic MIMO radar [ J ]. Electronics letters, 2011, 47(2) : 138-139. 被引量:1
  • 8郑志东,袁红刚,张剑云.冲击噪声背景下基于稀疏表示的双基地MIMO雷达多目标定位[J].电子与信息学报,2014,36(12):3001-3007. 被引量:8
  • 9TAYEM N, KWON H M. Conjugate ESPRIT (C-SPRIT) [ J]. IEEE transactions on antennas and propagation, 2004, 52(10) : 2618-2624. 被引量:1
  • 10YANG M L, CHEN B X, YANG X Y. Conjugate ESPRIT algorithm for bistatic MIMO radar [ J ]. Electronics letters, 2010, 46(25) : 1692-1694. 被引量:1

二级参考文献51

  • 1Zoubir A, Wang Y, and Charge P. On the ambiguity of COMET-EXIP algorithm for estimating a scattered source[J].Signal Processing, 2006, 86(2): 733- 743. 被引量:1
  • 2Zheng Zhi, Li Guang-jun, and Teng Yun-long. Low-complexity 2D DOA estimator for multiple coherently distributed sources[J]. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering COMPEL, 2012, 31(2): 443-459. 被引量:1
  • 3Zheng Zhi, Li Guang-jun, and Teng Yun-long. 2D DOA estimator for multiple coherently distributed sources using modified propagator[J]. Circuits, Systems and Signal Processing, 2012, 31(1): 255-270. 被引量:1
  • 4Xu X. Spatially-spread sources and the SMVDR estimator[C]. 4th IEEE Workshop on Signal Processing Advances in Wireless Communications, Rome, Italy, 2003: 639-643. 被引量:1
  • 5Gounon P, Adnet C, and Galy J. Localization angulaire de signaux non circulaires[J]. Traitement du Signal, 1998, 15(1): 17-23. 被引量:1
  • 6Abeida H and Delmas J. MUSIC-like estimation of direction of arrival for noncircular sources[J]. IEEE Transactions on Signal Processing, 2006, 54(7): 2678-2690. 被引量:1
  • 7Gao F, Wang Y, and Nallanathan A. Improved MUSIC by exploiting both real and complex sources[C]. MILCOM: IEEE Military Communications Conference, Washington DC USA. 2006: 1-6. 被引量:1
  • 8Malioutov D, Cetin M, and Willsky A. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010-3022. 被引量:1
  • 9Hyder M and Mahata K. Direction-of-arrival estimation using a mixed 2.0 norm approximation[J]. IEEE Transactions on Signal Processing, 2010, 58(9): 4646-4655. 被引量:1
  • 10Guo X, Wan Q, Wu B, et al.. Parameters localization of coherently distributed sources based on sparse signal representation[J]. IET Radar, Sonar & Navigation, 2007, 1(4) :261-265. 被引量:1

共引文献31

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部