期刊文献+

五阶常微分方程的Petrov-Galerkin谱元法 被引量:2

Petrov-Galerkin Spectral-Element Method for Solving Fifth-Order Ordinary Differential Equations
下载PDF
导出
摘要 通过区间剖分,降低数值逼近多项式的阶数,构造满足试探函数空间和检验函数空间的基函数,使得离散问题所对应的线性系统的系数矩阵是稀疏的,并可以进行有效地求解.数值算例验证了五阶常微分方程的Petrov-Galerkin谱元法的有效性和高精度. The polynomial order in the numerical approximation is reduced by partitioning the interval into several subintervals, and appropriate basis functions of the trial and test spaces are constructed. Which leads to a linear system with sparse coefficient matrix. Then, an efficient computational process is introduced to solve the linear system. Numerical experiment results demonstrate the high accuracy and effectiveness to the Petrov-Galerkin spectral-element method.
作者 王金平 庄清渠 WANG Jinping ZHUANG Qingqu(School of Mathematical Sciences, Huaqiao University, Quanzhou 362021 , China)
出处 《华侨大学学报(自然科学版)》 北大核心 2017年第3期435-440,共6页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(11501224) 华侨大学中青年教师科研提升资助计划(ZQN-PY201) 华侨大学研究生科研创新能力培育计划项目(1400213008)
关键词 五阶常微分方程 Petrov-Galerkin谱元法 基函数 数值实验 fifth-order ordinary differential equation Petrov-Galerkin spectral-element method basis func-tions numerical experiments
  • 相关文献

参考文献1

二级参考文献14

  • 1CANUTO C, HUSSAINI M Y, QUARTERONI A, et al. Spectral methods: Fundamentals in single domains[M].Berlin: Springer-Verlsg, 2006 : 401-470. 被引量:1
  • 2CANUTO C, HUSSAINI M Y, QUARTERONI A, et al. Spectral methods: Evolution to complex geometries and applications to fluid dynamics[M]. Berlin: Springer-Verlsg, 2007 : 237-357. 被引量:1
  • 3SHEN Jie, TANG Tao. Spectral and high-order methods with applications[M]. Beijing: Science Press of China, 2006 : 183-298. 被引量:1
  • 4KARNIADAKIS G, SHERWIN S J. Spectralhp element methods for computational fluid dynamics[M]. London: Ox- ford University Press, 2005 : 187-348. 被引量:1
  • 5JOHN W, HILLIARD J E. Free energy of a nonuiform systerm I: Interracial free energy[J]. J Chem Phys, 1958,28 (2) :258-267. 被引量:1
  • 6MICHELSON D M, SIVASHINSKY G I. Nonlinear analysis of hydrodynamic instability in laminar flames-II: Num- berical experiments[J]. Acta Astronautica, 1977,4 (11/12 ) : 1207-1221. 被引量:1
  • 7SIVASHINSKY G I. Nonlinear analysis of hydrodynamic instability in laminar flames-I dervation of basic equations [J]. Acta Astronautica, 1977,4(11/12) .. 1177-1206. 被引量:1
  • 8SHEN Ting-ting, XING Kang-zheng, MA He-ping. A legendre petrov-galerkin method for fourth-order differential equations[J]. Computers and Mathematics with Applications, 2011,61(1) :8-16. 被引量:1
  • 9ZHUANG Qing-qu. A legendre spectral-element method for the one-dimensional fourth-order equations[J]. Appl Math Comput,2011,218(7) :3587-3595. 被引量:1
  • 10MA He-ping, SUN Wei-wei. A legendre-petrov-galerkin and chebyshev collocation method for third-order diiteren- tial equations[J]. SIAM Journal on Numberical Analysis, 2000,38(5) :1425-1438. 被引量:1

共引文献1

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部