期刊文献+

逆序Banach空间二阶多点边值问题解的存在性和唯一性 被引量:1

Existence and uniqueness of solutions for second-order multiple-point boundary value problems in the reversed order Banach space
下载PDF
导出
摘要 为研究逆序Banach空间上二阶多点边值问题的解的存在性,主要利用上下解方法,通过给出单调迭代序列研究了所述问题解的存在性,并运用压缩映像原理讨论了解的唯一性。 The purpose of this paper is discussed how to use upper and lower solution method to the research on the existence and uniqueness of solutions for second-order multiple-point boundary value problems in the reversed order Banach space. The results are based on the monotone iterative method and contraction mapping principle, and give the iterative sequence solving solutions.
出处 《中国科技论文》 北大核心 2017年第5期596-600,共5页 China Sciencepaper
基金 四川省教育厅青年基金资助项目(12ZB108)
关键词 上下解 单调迭代方法 逆序 二阶多点边值问题 upper and lower solutions monotone iterative method reversed order second-order multiple-point boundary value problem
  • 相关文献

参考文献6

二级参考文献54

  • 1高永馨.非线性四阶常微分方程三点边值问题解的存在性[J].应用数学和力学,1996,17(6):543-550. 被引量:6
  • 2冯育强.一类二阶隐式微分方程的可解性(英文)[J].应用数学,2007,20(3):473-477. 被引量:3
  • 3COSTER C D, HABETS P. Two-point boundary value prob- lems: lower and upper solutions[M]. Amsterdam: Mathemat- ics in Science and Engineering, 2006 : 205. 被引量:1
  • 4CABADA A, HABETS P, POUSO R L. Optimal existence conditions for p-Laplacian equations with upper and lower solu- tions in the reverse order[J]. J Differential Equations, 2000, 166..385-401. 被引量:1
  • 5CABADA A, HABETS P, LOIS S. Monotone method for the Neumann problem with lower and upper solutions in the re- verse order [J]. Appl Math Compu, 2001,117 : 1-14. 被引量:1
  • 6TORRES P J, ZHANG Mei-rong. A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maxi- mum principle[J]. Math Nachr,2003,251 : 101-107. 被引量:1
  • 7JIANG Da-qing, YANG Ying, CHU Ji-feng, et al. The mon- otone method for Neumann functional differential equations with upper and lower solutions in the reverse order[J]. Non- linear Anal ,'2007,67 : 2815-2828. 被引量:1
  • 8YANG Ai-jun, GE Wei-gao. The monotone method for peri- odic differential equations with the non well-ordered upper and lower solutions [J]. J Comp Appl Math,2009,232:632-637. 被引量:1
  • 9MAWHIN J. Topological degree methods in nonlinear boundary value problems[C]//NSFCBMS Regional Confer- ence Series in Mathematics. Providence.. American Mathe- matical Society, 1979. 被引量:1
  • 10ERBE L H. Existence of solutions to boundary value problems for second order differential equations[ J]. Nonlinear Analysis: Theory, Methods & Applications, 1982, 6 ( 11 ) : 1155 - 1162. 被引量:1

共引文献17

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部