期刊文献+

二阶Neumann边值问题解的存在性与混合迭代

Existence and Mixed Approximation of Second Order Neumann Boundary Value Problems
下载PDF
导出
摘要 利用上下解方法并结合反最大值原理,通过建立辅助迭代系统,获得了一类二阶Neumann边值问题解的存在性及一致收敛于唯一解的混合迭代序列. Using the lower and uppers method,the anti-maximum principle and the modified mixed iteration system,we established the existence and mixed approximation results of second order Neumann boundary value problems.
作者 胡硕 王立波
出处 《北华大学学报(自然科学版)》 CAS 2015年第2期155-160,共6页 Journal of Beihua University(Natural Science)
基金 国家自然科学基金青年基金项目(11201008)
关键词 上下解方法 反最大值原理 二阶NEUMANN边值问题 混合迭代 lower and upper solutions method anti-maximum principle second order Neumann problems mixed approximation
  • 相关文献

参考文献13

  • 1C D coster, P Habets. Two-point boundary value problems: lower and upper solutions[M]. Amsterdam: Elsevier ,2006. 被引量:1
  • 2R Vrabel. On the lower and upper solutions method for the problem of elastic beam with hinged ends[J]J Math Anal Appl, 2015,421 (2) : 1455-1468. 被引量:1
  • 3MeiJia, Xiping Liu. Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions[J]. Applied Mathematics and Computation ,2014 ,232( 1) :313-323. 被引量:1
  • 4Guo-ChinJau , Yu-Hsien Chang. The upper-lower solution method for the coupled system of first order nonlinear PDEs[J]. Journal of Mathematical Analysis and Applications ,2013 ,401 (1) :367-378. 被引量:1
  • 5Amit K Verma , Ravi P Agarwal. Upper and lower solutions method for regular singular differential equations with quasiderivative boundary conditions[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17 ( 12) : 4551-4558. 被引量:1
  • 6Yu Tian, Weigao Ge. Multiple solutions of Sturm-Liouville boundary value problem via lower and upper solutions and variational methods[J]. Nonlinear Analysis: T M A ,2011 , 74( 17) :6733-6746. 被引量:1
  • 7Qi-Jian Tan, Zhong-Jian Leng. The method of upper and lower solutions for diffraction problems of quasilinear elliptic reactiondiffusion systems[J].Journal of Mathematical Analysis and Applications ,2011 ,380( 1) :363-376. 被引量:1
  • 8Robert Hakl, PedroJ Torres, Manuel Zamora. Periodic solutions of singular second order differential equations: upper and lower functions[J]. Nonlinear Analysis: T M A ,2011 , 74( 18) : 7078-7093. 被引量:1
  • 9Cui Bao, Xian Xu, Yan Song. Positive solutions for three-point boundary value problems with a non-well-ordered upper and lower solution condition[J]. Applied Mathematics Letters ,2012 ,25 (4) : 767-770. 被引量:1
  • 10Shuqin Zhang, Xinwei Suo The existence of a solution for a fractional differential equation with nonlinear boundary conditions considered using upper and lower solutions in reverse order[J]. Comput Math Appl ,2011 ,62( 3) : 1269-1274. 被引量:1

二级参考文献10

  • 1COSTER C D, HABETS P. Two-point boundary value prob- lems: lower and upper solutions[M]. Amsterdam: Mathemat- ics in Science and Engineering, 2006 : 205. 被引量:1
  • 2CABADA A, HABETS P, POUSO R L. Optimal existence conditions for p-Laplacian equations with upper and lower solu- tions in the reverse order[J]. J Differential Equations, 2000, 166..385-401. 被引量:1
  • 3CABADA A, HABETS P, LOIS S. Monotone method for the Neumann problem with lower and upper solutions in the re- verse order [J]. Appl Math Compu, 2001,117 : 1-14. 被引量:1
  • 4TORRES P J, ZHANG Mei-rong. A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maxi- mum principle[J]. Math Nachr,2003,251 : 101-107. 被引量:1
  • 5JIANG Da-qing, YANG Ying, CHU Ji-feng, et al. The mon- otone method for Neumann functional differential equations with upper and lower solutions in the reverse order[J]. Non- linear Anal ,'2007,67 : 2815-2828. 被引量:1
  • 6YANG Ai-jun, GE Wei-gao. The monotone method for peri- odic differential equations with the non well-ordered upper and lower solutions [J]. J Comp Appl Math,2009,232:632-637. 被引量:1
  • 7MAWHIN J. Topological degree methods in nonlinear boundary value problems[C]//NSFCBMS Regional Confer- ence Series in Mathematics. Providence.. American Mathe- matical Society, 1979. 被引量:1
  • 8董玉香,王定江.含两种群的非线性森林病虫害模型的定性分析[J].浙江工业大学学报,2010(1):71-74. 被引量:3
  • 9寿华好,江瑜,缪永伟.平面代数曲线的PH-C曲线逼近[J].浙江工业大学学报,2012,40(1):111-114. 被引量:6
  • 10王理同.带随机线性约束的最小二乘估计的相对效率[J].浙江工业大学学报,2012,40(3):352-354. 被引量:5

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部