期刊文献+

悬臂Rayleigh梁横向振动固有频率 被引量:2

Natural Frequencies of Transverse Vibration of Cantilever Rayleigh Beams
下载PDF
导出
摘要 在Euler-Bernoulli梁基础上考虑转动惯量,研究悬臂梁的横向振动问题.采用广泛适用的积分方程方法求解该问题,求出悬臂梁自由振动特征方程的近似解,获得悬臂梁振动固有频率的数值解答.积分方程方法与应力函数法、瑞兹法所得数值结果进行对比,表明了该方法的有效性. Considering the rotary inertia based on the Euler-Bernoulli beams,the transverse vibration of a cantilever beam is studied.The widely applicable integral equation method is employed to obtain the approximate solutions of characteristic equation and then the natural frequencies of a cantilever beam.Comparison of the numerical solutions obtained through integral equation method,stress function method,and ritz method shows the effectiveness of the integral equation method.
出处 《吉首大学学报(自然科学版)》 CAS 2017年第2期21-26,共6页 Journal of Jishou University(Natural Sciences Edition)
基金 吉首大学校级科研项目(15JD008)
关键词 悬臂Rayleigh梁 横向振动 固有频率 积分方程 cantilever Rayleigh beam transverse vibration natural frequency integral equation
  • 相关文献

参考文献8

二级参考文献60

  • 1黄建亮,陈树辉.轴向运动体系横向非线性振动的联合共振[J].振动工程学报,2005,18(1):19-23. 被引量:19
  • 2Laura P A A, Laura P A, Diez G, Cortinez V H. A note on vibrating circular plates carrying concentrated masses [ J ]. Mechanics Research Communications, 1984, 11 (6) : 397-400. 被引量:1
  • 3Azimi S. Free vibration of a circular plate carrying a concentrated mass at its center[J].Journal of Sound and Vibration, 1988, 127: 391-393. 被引量:1
  • 4Bambill D V, La Malfa S, Rossit C A, Laura P A A. Analytical and experimental investingation on transverse vibrations of solid, circular and an- nular plates carrying a coneentrated mass at an arbitrary position with ma- rine applications[J]. Ocean Engineering, 2004, 31 : 127-138. 被引量:1
  • 5Vinayak Ranjan, Ghosh M K. Transverse vibration of thin solid and annular circular plate with attached discrete masses [ J ]. Journal of Sound and Vibration, 2006, 292: 999-1003. 被引量:1
  • 6Mote C D Jr. A study of band saw vibrations[J]. Journal of the Franklin Institute,1965, 276(6): 430-444. 被引量:1
  • 7Zhang W, Yao M H, Zhang J H, et al. Using the extended Melnikov method to study the multi-pulse global bifurcations and chaos of a cantilever beam [J]. Journal of Sound and Vibration, 2009, 319: 541-569. 被引量:1
  • 8Oz H R, Pakdemirli M. Vibrations of an axially moving beam with time dependent velocity[J]. Journal of Sound Vibration, 1999, 227(2): 239-257. 被引量:1
  • 9Chert L Q, Wang B. Stability of axially accelerating viscoelastic beams: asymptotic perturbation analysis and differential quadrature validation[J]. European Journal of Mechanics A:Solid, 2009,28(4): 786-791. 被引量:1
  • 10Mergen H, Gh_ayesh, Sara Balar. Non-linear parametric vibration and stability ofaxially moving viscoelastic Rayleigh beams [J]. International Journal of Solids and Structures, 2008, 45: 6451-6467. 被引量:1

共引文献45

同被引文献14

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部