期刊文献+

初始几何缺陷的功能梯度梁振动特性分析

VIBRATION CHARACTERISTICS ANALYSIS OF FUNCTIONALLY GRADED BEAMS WITH INITIAL GEOMETRIC DEFECT
下载PDF
导出
摘要 对于初始几何缺陷的功能梯度梁的振动问题,基于功能梯度材料的细观结构模型,采用幂函数模拟材料组分沿梁厚度方向的变化规律;基于Euler-Bernoulli梁理论,从几何方程和Marguerre应变得到了轴向应变的表达式,利用Hamilton原理推导了初始几何缺陷的功能梯度梁的运动微分方程,并进行无量纲化;运用微分求积法对无量纲振型微分方程以及边界条件进行离散,得到了特征方程;最后,分析了初始几何缺陷的功能梯度梁的梯度指标、初始的几何曲率、边界约束对其无量纲固有频率和振型的影响。 For the vibration problem of a functionally graded beam with initial geometric defect,based on the meso-structure model of functionally graded materials,the power function is used to simulate the variation of material composition along the direction of beam thickness.Based on the Euler-Bernoulli beam theory,the axial strain expression was obtained from the geometric equation and Marguerre strain,the differential equation of motion for the functionally graded beam with initial geometric defect was derived by using the Hamilton principle in the dimensionless form.The dimensionless differential equations of mode and boundary conditions are discretized by differential quadrature method,and the eigen-equation is obtained.Finally,the effects of gradient index,initial geometric curvature,boundary constraints on the dimensionless natural frequency and modes of the beam with initial geometric defects are analyzed.
作者 田婷婷 王忠民 王清波 TIAN Tingting;WANG Zhongmin;WANG Qingbo(School of Civil Engineering and Architecture,Xi’an University of Technology,Xi’an 710048,China;Huanghe S&T University,Zhengzhou 450006;Department of Civil Engineering,Sichuan College of Architectural Technology,Deyang 618000,Sichuan,China)
出处 《力学与实践》 北大核心 2022年第5期1151-1158,共8页 Mechanics in Engineering
基金 国家自然科学基金资助项目(11972286)。
关键词 功能梯度梁 初始几何缺陷 振动特性 微分求积法 functionally graded beam initial geometric defect vibration characteristics differential quadrature method
  • 相关文献

参考文献7

二级参考文献44

  • 1吴明明,李艳松.弹性地基功能梯度梁自由振动问题[J].辽宁工程技术大学学报(自然科学版),2019,38(5):424-429. 被引量:2
  • 2王军军,谢海芬,周嘉,黄宜平.微悬臂梁在化学及生物传感器中的应用进展[J].微电子学,2004,34(5):493-496. 被引量:9
  • 3Holmes PJ. Bifurcations to divergence and flutter in flow-induced oscillators, a finite dimensional analysis. Journal of Sound and Vibration, 1977, 53:471-503. 被引量:1
  • 4Holmes P J, Marsden M. Bifurcations to divergence and flutter in flow-induced oscillators, a finite dimensional analysis. Aotomatica, 1978, 14:367-384. 被引量:1
  • 5Sri Namachchivaya N, Lee A. Dynamics of nonlinear aeroelastic systems symposium of fluid-structure interaction, aeroelasticity. Flow-Induced Vibration and Noise, 1997, 3:165-174. 被引量:1
  • 6Bolotin VV, Grishko AA, Kounadis AN, et al. Nonlinear panel flutter in remote post-critical domains. International Journal of Nonlinear Mechanics, 1998, 33(5): 753-764. 被引量:1
  • 7Cheng GF, Mei C. Finite element modal formulation for hypersonic panel flutter analysis with thermal effects. AIAA Journal, 2003, 172 (4): 687-695. 被引量:1
  • 8Azzouz MS, Mei C. Finite element time domain modal formulation for nonlinear flutter of cylindrical panels. In: AIAA-2006-1732, 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Newport, Rhode Island, May 1-4, 2006. 被引量:1
  • 9Dowell EH. Nonlinear flutter of curved panels. AIAA Jour- nal, 1969, 7(3): 424-431. 被引量:1
  • 10Dowell EH. Nonlinear flutter of curved panels II. AIAA Journal, 1970, 8(2): 259-261. 被引量:1

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部