期刊文献+

无界域上带加法噪音扰动的Benjamin-Bona-Mahony方程在高正则空间上的随机吸引子的上半连续性 被引量:1

On Upper Semi-continuity of Random Attractors in High Regular Space for Benjamin-Bona-Mahony Equation Perturbed by Additive Noise on Unbounded Domains
下载PDF
导出
摘要 证明了带加法噪音扰动的Benjamin-Bona-Mahony方程的随机吸引子在H10(Q)的拓扑下在零点处的上半连续性.在方法上,尾部估计、正交投影和Kuratowski测度是证明系统一致Omega紧性的关键. It has been investigated that the family of random attractors fo r Benjamin-Bona-Mahony (B BM ) equation perturbed by the additive noise on unbounded domains is upper semi-continuous at zero point un-der the topology of HJ (Q). The methods of ta i l-estimates, canonical projection and K uratowski measure are essential for the uniform Omega-compactness of systems.
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2016年第11期15-19,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11571283) 贵州省教育厅自然科学基金资助(KY[2016]103)
关键词 上半连续性 随机动力系统 随机吸引子 Benjamin-Bona-Mahony方程 upper semi-cont inuity random dynamical systems random a t tra c to rs Benjamin-Bona-Mahony equation
  • 相关文献

参考文献2

二级参考文献8

  • 1GUO BoLing~1 WANG GuoLian~(2+) Li DongLong~3 1 Institute of Applied Physics and Computational Mathematics,P.O.Box 8009,Beijing 100088,China,2 The Graduate School of China Academy of Engineering Physics,P.O.Box 2101,Beijing 100088,China,3 Department of Information and Computer Science,Guangxi University of Technology,Liuzhou 545006,China.The attractor of the stochastic generalized Ginzburg-Landau equation[J].Science China Mathematics,2008,51(5):955-964. 被引量:11
  • 2郭柏灵,高洪俊.广义Ginzburg-Landau方程的有限维行为[J].自然科学进展(国家重点实验室通讯),1994,4(4):423-434. 被引量:17
  • 3GUO Bo lin, WANG Bi-xiang. Finite Dimensional Behavior for the Derivative Ginzburg-Landau Equation in Two Spatial Dimensions [J]. Journal Phy D, 1995, 89: 83-90. 被引量:1
  • 4ARNOLD L. Random Dynamical System[M]. Berlin: Springer-Verlag, 1998. 被引量:1
  • 5GUO Bo-lin, WANG Bi-xiang. Finite Dimensional Behavior for the Derivative Ginzburg-Landau Equation in Two Spatial Dimensions [J]. Journal Phy D, 1995, 89: 83--90. 被引量:1
  • 6LI Yang-rong, GU An-hui, LI Jia. Existence and Continuity of Bi-Spatial Attractors and Application to Stochastic Semilinear Laplacian Equations [J].J Differential Equations, 2015, 258 : 507-- 509. 被引量:1
  • 7TEMAM R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics [M]. 2th ed. New York: Springer-Ver- lag, 1988. 被引量:1
  • 8王蕊,李扬荣.带有可乘白噪音的广义Ginzburg-Landau方程的随机吸引子[J].西南大学学报(自然科学版),2012,34(2):92-95. 被引量:12

共引文献13

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部