期刊文献+

随机Ginzburg-Landau方程在速降空间的随机吸引子

On Attractors for Stochastic Ginzburg-Landau Equation in Temper Space
下载PDF
导出
摘要 主要证明了带有乘法白噪音的Ginzburg-Landau方程的解生成的随机动力系统在速降空间中存在紧的吸引子,该吸引子吸引L2中的每一个速降集. This paper proves the quation with multiplicative noise temper space, and the attractor random dynamical system (RDS) that the stochastic Ginzburg-Landau e and the unique solution generates possesses a compact random attractor in attracts every temper set of L2.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第9期18-22,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11071199) 重庆市自然科学基金资助项目(2009BB8105)
关键词 随机动力系统 GINZBURG Landau方程 速降集 随机吸引子 白噪音 WIENER过程 random dynamical systems Ginzburg-Landau equation temper sets random attractor whitenoise wiener process
  • 相关文献

参考文献7

  • 1WANG Guo lian, GUO Bo-Iina, LI Yang tong. The Asymptotic Behavior o{ the Stochastic Ginzburg-Landou Equation with Additive Noise [J]. App1 Math Comput, 2008, 198(2).. 849-857. 被引量:1
  • 2王蕊,李扬荣.带有可乘白噪音的广义Ginzburg-Landau方程的随机吸引子[J].西南大学学报(自然科学版),2012,34(2):92-95. 被引量:12
  • 3GUO Bo-ling, WANG Bi-xiang. Finite Dimensional Behaviour for the Derivative Ginzburg-Landau Equation in Two Spa-tial Dimensions [J]. Phys D, 1995, 89(1-2) : 83-99. 被引量:1
  • 4CRAUEL h, FLANDOLI F. Attracors for Random Dynamical Systems [J]. Probab Theory Related Fields, 1994, 100 (3) : 365-393. 被引量:1
  • 5LI Yang rong, BUO Bo-ling. Random Attractors for Quasi Continuous Random Dynamical Systems and Applications to Stochastic Reaction-Diffusion Equations [J]. J Differential Equations, 2008, 248(7): 1775-1800. 被引量:1
  • 6ARNOLD L. Random Dynamical Systems [M]. Berlin: Springer-Verlag, 1995. 被引量:1
  • 7BABIN A V, Vishik M I. Attractors of Partial Differential Evolution Equation in a Unbounded Domain [-J]. Pro Roy Soc Edinburgh, 1990, 116(3 4): 221-243. 被引量:1

二级参考文献4

  • 1GUO BoLing~1 WANG GuoLian~(2+) Li DongLong~3 1 Institute of Applied Physics and Computational Mathematics,P.O.Box 8009,Beijing 100088,China,2 The Graduate School of China Academy of Engineering Physics,P.O.Box 2101,Beijing 100088,China,3 Department of Information and Computer Science,Guangxi University of Technology,Liuzhou 545006,China.The attractor of the stochastic generalized Ginzburg-Landau equation[J].Science China Mathematics,2008,51(5):955-964. 被引量:11
  • 2郭柏灵,高洪俊.广义Ginzburg-Landau方程的有限维行为[J].自然科学进展(国家重点实验室通讯),1994,4(4):423-434. 被引量:17
  • 3GUO Bo lin, WANG Bi-xiang. Finite Dimensional Behavior for the Derivative Ginzburg-Landau Equation in Two Spatial Dimensions [J]. Journal Phy D, 1995, 89: 83-90. 被引量:1
  • 4ARNOLD L. Random Dynamical System[M]. Berlin: Springer-Verlag, 1998. 被引量:1

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部