摘要
针对目前弹丸落点预报方法预报时间较长和精度不高的问题,提出了基于粒子群(PSO)优化的支持向量机(SVM)神经网络预测方法。该方法采用PSO优化算法优化SVM训练参数,以获得最优SVM神经网络落点预测模型。在此基础上,使用卡尔曼滤波处理外弹道数据形成神经网络训练数据,进行落点预报仿真测试。仿真结果表明,射程最大误差为7.371m,横偏最大误差为0.886m;落点预报时间在35ms之内,比数值积分法快了一个数量级,为弹丸落点预报的实际应用提供了一种途径。
Aiming at the problem of the shortage of predicting a projectile impact-point quickly and precisely , this paper introduced the forecasting method based on Particle Swarm Optimization support vector machine neu-ral network. In order to obtain the optimal support vector machine neural network prediction model of impact- point, particle swarm optimization algorithm is used to optimize the training parameters of support vector ma-chine. And then,integrated the exterior ballistic data using the Kalman filtering into the training data of neural network for the impact-point prediction simulation test. Simulation results show that the maximum range error of the method is 7. 371m, and the maximum partial navigation error is 0. 886m; The forecast time of impact-point is within 35ms which is faster than the numerical integration method in an order of magnitude. Therefore, this method provides a road for the practical application of the projectile impact point prediction.
作者
马焱
赵捍东
黄鑫
MA Yan ZHAN Handong HUANG Xin(College of Mechatronics Engineering, North University of China, Taiyuan 030051,China)
出处
《探测与控制学报》
CSCD
北大核心
2017年第2期124-128,共5页
Journal of Detection & Control
关键词
神经网络
PS0算法
SVM
落点预测
neural network
particle swarm optimization algorithm
support vector machine
impact-point prediction.