期刊文献+

卡尔曼滤波在弹道修正弹落点推算中的应用 被引量:41

Application of Kalman Filtering in Calculation of Trajectory Falling Point of Trajectory Correction Projectiles
下载PDF
导出
摘要 为了准确地估算常规弹箭的飞行弹道,以便对其实施简易弹道修正并大幅度提高弹箭的密集度,应用卡尔曼滤波方法,结合质点弹道模型,建立了卡尔曼滤波弹道模型.对地面侦察雷达探测到的一段飞行弹道参数进行滤波,进而外推出弹道落点.仿真结果表明,雷达测量信号中的噪声具有随机性且幅值较大,在卡尔曼滤波过程中,滤波方差衰减很快,滤波后测量噪声能够较快地大幅度减小;外推弹道落点精度随着雷达跟踪时间(跟踪点数)的增加而迅速提高,经过一段跟踪时间后,这种趋势逐渐变缓.对于大口径弹道修正弹,雷达跟踪点数宜取30~40点,求解一条弹道约需几十ms. In order to estimate the flight trajectory of conventional projectiles accurately so as to implement simple trajectory correction and improve projectile concentration greatly, the ballistic model of Kalman filtering was established by using Kalman filtering method and particle trajectory equations. The parameters of a section flight trajectory detected by the radar on ground were filtered, and the trajectory falling point was obtained by extrapolating. The simulation results show that the signal noise in radar measurement is random and of high amplitude. The attenuation of filtering variance is very rapid in Kalman filtering process and the measurement noise can be decreased rapidly and greatly by filtering. The precision of extrapolation trajectory falling point is improved with the increase of radar tracking time (tracking point number). The trend becomes slow gradually after a period of tracking time. 30-40 can be recommended as the tracking point number and the calculation time of a trajectory is about several decade ms for large caliber trajectory correction projectiles.
出处 《弹道学报》 CSCD 北大核心 2008年第3期41-43,48,共4页 Journal of Ballistics
关键词 弹道修正弹 雷达 卡尔曼滤波 弹道落点 trajectory correction projectiles radar Kalman filtering trajectory falling point
  • 相关文献

参考文献3

二级参考文献9

  • 1LI Xiaorong, JILKOV V P. A survey of maneuvering target tracking: Part Ⅱ: ballistic target models [C]// Proc 2001 SPIE Conf on Signal and Data Processing of Small Targets. San Diego, USA:The International Society for Optical Engineering, 2001: 559-581. 被引量:1
  • 2COSTA P. Adaptive model architecture and extended Kalman-Bucy filters [J]. IEEE Trans Aerospace and Electronic Systems, 1994, 30(2) :525-533. 被引量:1
  • 3FARINA A, BENVENUTI D, RISTIC B. Tracking a ballistic target: comparison of several nonlinear filters [J]. IEEE Trans Aerospace and Electronic Systems, 2002, 38(3): 854-867. 被引量:1
  • 4JULIER S J, UHLMANN J, DURRANT-WHYTE H F. A new method for nonlinear transformation of means and covariances in filters and estimatiors [J]. IEEE Trans Automatic Control, 2000, 45 (3) : 477-482. 被引量:1
  • 5JULIER S, UHLMANN J. Unscented filtering and nonlinear estimation [J]. Proceedings of the IEEE, 2004,92(3) .. 401-422. 被引量:1
  • 6BRUNO M G S, PAVLOV A. A density-assisted particle filter algorithm for target tracking with unknown ballistic coefficient [C]//Proc ICASSP- 05. Piscataway, USA: IEEE, 2005 : 5-8. 被引量:1
  • 7SCHEI T S. A finite-difference method for linearization in nonlinear estimation algorithm [J]. Automatica, 1997,33 (11) : 2053-2058. 被引量:1
  • 8ITO K, XIONG K. Gaussian filters for nonlinear filtering problems [J]. Automatica, 2000,45(5):910-927. 被引量:1
  • 9FARINA A, STUDER F A. Radar data processing [M]//Introduction and Tracking: Ⅰ. New York: Researches Studies Press, 1985. 被引量:1

共引文献34

同被引文献251

引证文献41

二级引证文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部