期刊文献+

结合透射率和大气光改进的暗原色先验去雾算法 被引量:2

Improved dark channel prior dehazing algorithm combined with atmospheric light and transmission
下载PDF
导出
摘要 针对暗原色先验透射率在明亮区域估计不足以及大气光误差问题,提出一种结合透射率和大气光改进的去雾算法。在分析高斯函数特点的基础上,依据有雾图像暗原色的高斯函数初步估计透射率,利用最大最小操作消除块状效应;然后,通过晕光算子与形态学膨胀操作获取大气光描述区域来获取大气光值;最后根据大气散射模型复原清晰图像。实验结果表明,所提算法能够有效去除图像中的雾气,浓雾图像恢复效果相比暗原色先验等算法更佳,且处理速度较快,便于实时应用。 Since the dark channel prior transmission and atmospheric light in the bright region axe poorly estimated, an improved dehazing algorithm combined with atmospheric light and transmission was proposed. On the basis of analysis of the characteristics of Gaussian function, a preliminary transmission was estimated through the Gaussian function of dark channel prior of a fog image, and the maximum and minimum operations were used to eliminate the block effect. Next, the atmospheric light was obtained by atmospheric light description area, which was acquired by halo operation and morphological dilation operation. Finally, a clear image could be reconstructed according to the atmospheric scattering model. The experimental results show that the proposed algorithm can effectively remove the fog from the image and the recovered effect of thick fog is better than the comparison algorithms, such as dark channel prior, meanwhile the algorithm has a faster processing speed and is suitable for real-time applications.
作者 陈高科 杨燕 张宝山 CHEN Gaoke YANG Yan ZHANG Baoshan(School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou Gansu 730070, Chin)
出处 《计算机应用》 CSCD 北大核心 2017年第5期1481-1484,1502,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61561030) 甘肃省财政厅基本科研业务费资助项目(214138) 兰州交通大学教改项目(160012)~~
关键词 高斯函数 大气散射模型 去雾 大气光区 暗原色先验 Gaussian function atmospheric scattering model dehazing atmospheric light area Dark Channel Prior (DCP)
  • 相关文献

参考文献4

二级参考文献57

  • 1芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 2詹翔,周焰.一种基于局部方差的雾天图像增强方法[J].计算机应用,2007,27(2):510-512. 被引量:45
  • 3RUSSO F. An Image Enhancement Technique Combining Sharpening and Noise Reduction[J]. IEEE Transactions on Instrumentation and Measurement, 2002, 51(4): 824-828. 被引量:1
  • 4LAND EH. The Retinex theory of Color Vision[J]. Scientific American, 1977, 237(6) : 108 - 129. 被引量:1
  • 5FOI A. Another Wavelet Approach to Higher Dimensionality :Ridgelet transforms[A]. Tampere International Center for Signal Processing[C]. 2004. 被引量:1
  • 6DONOHO DL, DUNCAN MR, TRANSFORM DC. Strategy, Implementation and Experiments[EB/OL]. http://www-stat, stanford.edu/~ donoho/Reports/1999/DCvT, pdf. 被引量:1
  • 7STARCK JL, MURTAGH F, CANDeS EJ, et al. Gray and Color Image Contrast Enhancement by the Curvelet Transform[J]. IEEE Transactions on Image Processing, 2003, 12(6) : 706 -717. 被引量:1
  • 8KIM TK, PAIK JK, KANG BS. Contrast enhancement system using spatialIy adaptive histogram equalization with temporal filtering[J].IEEE Transactions on Consumer Electronics, 1998, 44( 1 ): 82 -86. 被引量:1
  • 9STARK JA, FITZGERALID WJ. An Alternative Algorithm for Adaptive Histogram Equalization[J]. Graphical Models and Image Processing, 1996, 58(2) : 180 - 185. 被引量:1
  • 10KIM JY, KIM LS, HWANG SH. An Advanced Contrast Enhancement Using Partially Overlapped Sub-Block Histogram Equalization[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11(4): 475-484. 被引量:1

共引文献79

同被引文献34

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部