摘要
热物理性质不同的材料之间存在界面热阻,界面热阻对热传输过程产生极大的影响,并在很大程度上决定了复合材料的导热性能。金刚石颗粒增强金属基复合材料(Metal matrix composites,MMCs)充分发挥了金刚石的高热导率和低热膨胀系数的优点,有望获得高的热导率以及与半导体相匹配的热膨胀系数,可满足现代电子设备在散热能力上提出的越来越高的要求,作为新一代电子封装材料已引起广泛关注。界面热导(界面热阻的倒数)既是决定复合材料导热能力的关键因素,也是研究的难点,复合材料制备工艺、界面改性方式(金属基体合金化或金刚石表面金属化)以及改性金属种类均会影响界面热导。详细论述了界面热导理论及实验研究的最新成果,并对金刚石/金属复合材料在未来研究中面临的主要问题进行探讨。
Thermal boundary resistance(TBC) exists at interface sandwiched between two materials with different physical properties. The TBC greatly affects the heat transfer and largely determines the thermal properties of the composites. Diamond parti- cles reinforced metal matrix composites (MMCs) give full play to the advantages of high thermal conductivity and low thermal expan- sion coefficient of diamond, and it has the potential to achieve a high thermal conductivity and a thermal expansion coefficient compa- tible with semiconductor. This can meet the ever-increasing demands of cooling capacity of modern electronic devices. Consequently, MMCs have attracted widespread concern as a new generation of electronic packaging materials. Tt-(the reciprocal of thermal boundary resistance) is a key factor in determining the heat conduction ability of composite. In addition, the TBC is difficult to deal with since the preparation process of composite, interface modification methods (metal matrix alloying or diamond surface metallization) and modifying metal species can all have an effect. In this paper, the latest achievements in both theoretical and experimental researches of TBC are discussed. Meanwhile, the main questions faced in the investigation of diamond/metal composites are also proposed.
出处
《材料导报》
EI
CAS
CSCD
北大核心
2017年第7期72-78,87,共8页
Materials Reports
基金
国家自然科学基金(51571015)
国家国际科技合作计划(2014DFA51610)
关键词
电子封装材料
界面热导
金刚石
金属基复合材料
热导率
electronic packaging materials, thermal boundary conductance, diamond, metal matrix composites, thermal conductivity