摘要
通过构建一个迭代算法来求解复矩阵方程组最小F范数剩余问题:min‖[A_1XB_1+C_1D_1A_2XB_2+C_2D_2]-(M_1M_2)‖,其中X是埃尔米特双对称矩阵,即满足X=X^H=S_nXS_n;在不考虑舍入误差的条件下,对于任意双埃尔米特矩阵X_0,矩阵方程组的解都能在有限步内得到;最后,给出一个数值试验来检验算法的有效性.
This paper is concerned with an iterative algorithm for solving the minimum Frobenius norm residualproblem : min ‖[A1XB1+C1D1A2XB2+C2D2]-(M1M2)‖, where X is a Hermite bisymmetric matrix which satisfies X = Xn=SnXSn. We can get the solution with finite iteration steps in the absence of roundoff errors for bisymmetric matrix X0 by this algorithm. Finally, a numerical example is given to illustrate the proposed method.
出处
《重庆工商大学学报(自然科学版)》
2017年第2期6-11,共6页
Journal of Chongqing Technology and Business University:Natural Science Edition
基金
湖南省自然科学基金项目(2015JT2134)
关键词
复矩阵方程
迭代算法
埃尔米特双对称解
complex matrix equations
iterative algorithm
Hermite bisymmetric solution any initial Hermite effectiveness of the