摘要
输入整形器能有效抑制柔性机构的残余振动,其鲁棒性是评价输入整形器抑制振动幅值和频率范围能力的重要参数,可通过分析灵敏度曲线的不灵敏度获得。为了获得更高的鲁棒性,对典型的输入整形器进行改进,分别增加高阶导数和多峰的约束条件,从而加宽抑制残余振动的频率范围。介绍了高阶零振动与零导数和多峰极不灵敏输入整形器的基本原理和鲁棒性分析方法,并将其应用于一种柔性并联机器人。使用数值仿真对输入整形器的鲁棒性进行分析,对各种输入整形器的不灵敏度进行对比。此外,通过系统响应曲线,分析系统共振频率的变化对输入整形器抑振能力的影响,从而验证各种输入整形器鲁棒性的高低。仿真结果表明,THEI输入整形器的鲁棒性最高,DHEI输入整形器的综合性能最好。
Input shaper can effectively suppress the residual vibration of the flexible mechanism. Its robustness is an important parameter to evaluate the amplitude and the frequency range of vibration reduction of input shaper, which can be obtained by analyzing the insensitivity of the sensitivity curve. In order to obtain stronger robustness, the typical input shapers are improved by adding higher-derivative and multi-hump constraint conditions. The improved input shaper can broaden the frequency range of the residual vibration suppression. The basic principle and robust analysis method of the high order zero vibration and zero differential and multi-hump extra-insensitive input shaper are introduced, followed by the application of these methods to a model of flexible parallel manipulator. The robustness of input shapers is analyzed by numerical simulation, and the insensitivities of various input shapers are compared. Moreover, according to the system response curve, the influence of the system resonance frequency change due to the vibration suppression capability of the input shaper is analyzed. Thus the performance of various input shapers' robustness is verified. The simulation results show that the robustness of the THEI input shaper is the highest, and the synthesized performance of the DHEI input shaper is the best.
作者
魏玉兰
李兵
黄旭
Wei Yulan Li Bing Huang Xu(School of Engineering, Huzhou University, Huzhou 313000, Zhejiang, China School of Information Engineering, Huzhou University, Huzhou 313000, Zhejiang, China)
出处
《现代制造工程》
CSCD
北大核心
2017年第4期36-41,共6页
Modern Manufacturing Engineering
基金
国家自然科学基金项目(61202290)
浙江省自然科学基金项目(LQ12E05008)
关键词
输入整形
抑振
鲁棒性
高阶导数
多峰
input shaping
vibration suppression
robustness
higher-derivative
multi-hump