期刊文献+

Asymptotic behavior and blowup for two generalized Ginzburg-Landau type equations with several nonlinear source terms

Asymptotic behavior and blowup for two generalized Ginzburg-Landau type equations with several nonlinear source terms
原文传递
导出
摘要 In this paper, the long-time behavior and blowup of solutions for two generalized Ginzburg-Landau type equations with several nonlinear source terms are investigated. First, the conditions in which the solutions of the two equations are positive are ana- lyzed by using Green's function. According to the characteristics of nonlinear terms, four different functionals are constructed for solving the problems. Finally, we obtain the long-time behavior and finite-time blowup of solutions for the initial and boundary value problem by using these functionals.
出处 《International Journal of Biomathematics》 2017年第2期235-247,共13页 生物数学学报(英文版)
基金 This work was supported by the Natural Science Foundation of Anhui Province (1508085MA10), the Key Program of the Youth Elite Support Plan in Universities of Anhui Province (gxyqZD2016340), the Key Projects of Suzhou University Outstanding Youth Talent Support Program (2016XQNRL003).
  • 相关文献

参考文献4

二级参考文献35

  • 1刘亚成,数学年刊.A,1988年,9A卷,2期,213页 被引量:1
  • 2刘亚成,数学年刊.A,1988年,9A卷,4期,459页 被引量:1
  • 3周毓鳞,数学学报,1983年,26卷,2期,234页 被引量:1
  • 4陈国旺,应用数学学报,1991年,14期,500页 被引量:1
  • 5Sattinger D H.On global solution of nonlinera hyperbolic equations[J].Archive for Rational Mechanics and Analysis,1968,30:148-172. 被引量:1
  • 6Payne L E,Sattinger D H.Sadle points and instability of nonlinear hyperbolic equations[ J].Israel Journal of Mathematics,1975,22:273-303. 被引量:1
  • 7Tsutsumi M.On solutions of semilinear differential equations in a Hilbert space[J].Math Japan,1972,17:173-193. 被引量:1
  • 8LIU Ya-cheng.On potential wells and vacuum isolating of solutions for semilinear wave equations[J].Journal of Differential Equations,2003,192(1):155-169. 被引量:1
  • 9LIU Ya-cheng,ZHAO Jun-sheng.Multidimensional viscoelasticity equations with nonlinear damping and source terms[J].Nonlinear Analysis,2004,56(6):851-865. 被引量:1
  • 10LIU Ya-cheng,ZHAO Jun-sheng.Nonlinear parabolic equations with critical initial conditions J (u0)= d or I (u0) = 0[J].Nonlinear Analysis,2004,58(7/8):873-883. 被引量:1

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部