期刊文献+

基于Walsh平均的变系数单指标模型的估计

Walsh-Average-Based Spline Estimation in a Varying-Coefficient Single-Index Model
下载PDF
导出
摘要 在变系数单指标模型的估计中,基于最小二乘惩罚函数方法是一种主流方法,一般情况下其具有良好的性质,但当参数分布非正态时,其估计结果不够稳健.在前人研究的基础上提出了一种基于Walsh平均的估计方法,并通过算例验证了估计的准确性及在参数分布非正态情形下估计的效率优势. The method based on LS is mostly used when a varying-coefficient single-index model is applied. However,this way of estimation is not as much efficient as usual when parameters are non-normal distribution. To overcome this issue,Walsh-average-based spline estimation is proposed on the basis of previous studies. In addition, by using one example, the accuracy and efficiency of Walsh-average-based spline estimation under the non-normal distribution of parameters are verified.
作者 彭佳
出处 《内蒙古大学学报(自然科学版)》 CAS 北大核心 2017年第2期117-121,共5页 Journal of Inner Mongolia University:Natural Science Edition
基金 国家自然科学基金资助(71262022) 内蒙古自然科学基金资助(2014MS0708)
关键词 Walsh平均 变系数单指标模型 半参数模型 交叉验证 Walsh-average varying-coefficient single-index model semi-parametric model crossvalidation
  • 相关文献

参考文献1

二级参考文献22

  • 1杨振海,程维虎.统计模拟[J].数理统计与管理,2006,25(1):117-126. 被引量:7
  • 2杨振海,程维虎.非均匀随机数产生[J].数理统计与管理,2006,25(6):750-756. 被引量:18
  • 3FAN Jianqing.Local linear regression smoothers and their minimax efficiencies[J].Ann.Statist.,1993,21:196-216. 被引量:1
  • 4FAN Jianqing,Peter H.On cureve estimation by minimizing mean absolute deviation and its implications[J].Ann.Statist.,1994,22:867-885. 被引量:1
  • 5KAI Bo,LI Runze,ZOU Hui.Local composite quantile regression smoothing:An efficient and safe alternative to local polynomial regression[J].J.R.Stat.Soc.Ser.B.,2010,72:49-69. 被引量:1
  • 6FENG Long,ZOU Changliang,WANG Zhaojun.Local Walsh-average regression[J].Journal of Multivariate Analysis,2012,106:36-48. 被引量:1
  • 7Hodges J L,Lehmann E L.Estimation of location based on ranks[J].The Annals of Mathematical Statistics,1963,34:598-611. 被引量:1
  • 8Wahba G.Spline Models for Observational Data[M].Philadelphia:Society for Industrial and Applied Mathematics,1990. 被引量:1
  • 9Green P J,Silverman B W.Nonparametric Regression and Generalized Linear Models[M].London:Chapman&Hall,1994. 被引量:1
  • 10HUANG Jianhua.Local asymptotics for polynomial spline regression[J],Ann.Statist.,2003,31:1600-1635. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部