期刊文献+

基于Walsh平均的非参数回归模型的稳健估计 被引量:4

Robust Walsh-Average-Based Spline Estimator in Nonparametric Regression Model
原文传递
导出
摘要 由于非参数回归模型复杂灵活,被广泛应用。在众多估计方法中,最小二乘法最为常用,一般情况下具有良好的性质,但在处理厚尾分布及异常点时表现的不够稳健。本文针对此,提出了基于Walsh平均的稳健样条估计。我们理论地推导了估计结果的相合性和渐近正态性;并与多项式样条回归做比较。计算得Walsh平均的样条估计相对于多项式样条回归的渐近相对效率与Wilcoxon符号秩检验相对于t-检验的渐近相对效率是一样的。在正态情形下我们的方法与多项式样条回归差不多,在非正态情形下,我们的方法表现更为稳健,效率明显优于多项式样条回归。 Nonparametric regression model is widely used for its flexibility and complexity.The LS method is always efficient in nonparametric regression model fitting,but it may suffer when the error follows a heavy-tailed distribution or in the presence of outliers.To overcome that issue,we the propose Robust Walsh-Average-Based Spline Estimator.We theoretically proof that our new approach is consistent and asymptotic normal,and compare with Polynomial spline estimation.Its asymptotic relative efficiency with respect to the Polynomial spline estimation is the same as that of the signed-rank Wilcoxon test in comparison with the t-test.Its efficiency compared to Polynomial spline estimation is high.Even for normal,its AREs are merely slightly smaller than 1.
出处 《数理统计与管理》 CSSCI 北大核心 2015年第4期636-646,共11页 Journal of Applied Statistics and Management
基金 国家自然科学基金(71262022 71163031) 内蒙古自然科学基金项目(2014MS0708)
关键词 非参数回归 Walsh平均 B-样条 Wilcoxon符号秩检验 Cross-Validation nonparametric regression Walsh-average B-spline Wilcoxon signed-rank test crossvalidation
  • 相关文献

参考文献22

  • 1FAN Jianqing.Local linear regression smoothers and their minimax efficiencies[J].Ann.Statist.,1993,21:196-216. 被引量:1
  • 2FAN Jianqing,Peter H.On cureve estimation by minimizing mean absolute deviation and its implications[J].Ann.Statist.,1994,22:867-885. 被引量:1
  • 3KAI Bo,LI Runze,ZOU Hui.Local composite quantile regression smoothing:An efficient and safe alternative to local polynomial regression[J].J.R.Stat.Soc.Ser.B.,2010,72:49-69. 被引量:1
  • 4FENG Long,ZOU Changliang,WANG Zhaojun.Local Walsh-average regression[J].Journal of Multivariate Analysis,2012,106:36-48. 被引量:1
  • 5Hodges J L,Lehmann E L.Estimation of location based on ranks[J].The Annals of Mathematical Statistics,1963,34:598-611. 被引量:1
  • 6Wahba G.Spline Models for Observational Data[M].Philadelphia:Society for Industrial and Applied Mathematics,1990. 被引量:1
  • 7Green P J,Silverman B W.Nonparametric Regression and Generalized Linear Models[M].London:Chapman&Hall,1994. 被引量:1
  • 8HUANG Jianhua.Local asymptotics for polynomial spline regression[J],Ann.Statist.,2003,31:1600-1635. 被引量:1
  • 9Hettmansperger T,McKean J.Robust nonparametric statistical methods[M].London:Arnold,1998. 被引量:1
  • 10Rice J A,Wu C O.Nonparametric mixed effects models for unequally samplednoisy curves[J].Biometrics,2001,57:253-259. 被引量:1

二级参考文献83

共引文献74

同被引文献20

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部