期刊文献+

316不锈钢在添加微量稀土元素硝酸熔盐中腐蚀行为研究 被引量:3

Corrosion Behavior of 316 Stainless Steel in Mixed Molten Nitrate Salts with and without Rare Earth Element
原文传递
导出
摘要 采用电化学方法研究了316不锈钢在添加1‰(质量分数)和2‰Y2O3的熔盐中的腐蚀行为,采用SEM/EDS分析了腐蚀产物的形貌和物相组成。结果表明:添加Y2O3可以降低不锈钢的腐蚀速率,添加1‰和2‰的Y2O3,其腐蚀电流密度由9.47 m A·cm-2分别降至7.13和3.73 m A·cm-2。电化学阻抗测试结果表明,316不锈钢在熔融含稀土氧化物的三元硝酸盐中电荷转移电阻值升高,因此耐蚀性得以提高。 Ternary nitrate salts are widely used generation system, but the corrosion damage of the as thermal storage medium for solar thermal power heat storage pipe caused by the molten nitrate salts is significantly severe. In order to improve the corrosion resistance of the pipeline material, the corrosion behavior of 316 stainless steel in mixed molten nitrate-salts KNO3-NaNO2-NaNO3 without and with addition of 1‰ (mass fraction) and 2‰Y2O3 was comparatively studied by means of electrochemical method and SEM/EDS. The results showed that the addition of Y2O3 can reduce the corrosion rate of stainless steel. The corrosion current density decreased from 9.47 mA·cm^2 to 7.13 and 3.73 mA·cm^2 respectively with the addition of 1‰ and 2‰Y2O3 and correspondingly, the transfer resistance of 316 stainless steel in mixed molten nitrate salts was enhanced. It can be concluded that the addition of trace of rare earth element is an effective way to improve the corrosion resistance of 316 stainless steel in the mixed molten nitrate salts.
出处 《中国腐蚀与防护学报》 CAS CSCD 北大核心 2017年第1期16-22,共7页 Journal of Chinese Society For Corrosion and Protection
基金 国家自然科学基金(51201131) 西安科技大学培育基金(6310214005) 西安科技大学博士启动金(6310115012)~~
关键词 电化学 316不锈钢 三元硝酸盐 稀土元素 腐蚀 electrochemistry, 316 stainless steel, ternary nitrate salt, rare earth element, corrosion
  • 相关文献

参考文献9

二级参考文献67

  • 1王胜林,王华,祁先进,李洪宇.高温相变蓄热的研究进展[J].能源工程,2004,24(6):6-11. 被引量:22
  • 2陈大英,李福燊,王新东,李丽芬.熔融碳酸盐燃料电池新型阴极材料的耐蚀性能[J].北京科技大学学报,2005,27(1):79-81. 被引量:3
  • 3常晓亮,王旭,王兰芳,张俊善,祝美丽.316L不锈钢在熔融LiCl-3%Li_2O中的腐蚀行为[J].机械工程材料,2007,31(4):11-13. 被引量:6
  • 4GIL A,MEDRANO M,MARTORELL l,et al.State of the art on high temperature thermal energy storage for power generation.Part l-Concepts,materials and modellization[J].Benewable &Sustainable Energy Reviews,2010,14:56-72. 被引量:1
  • 5BROWN D,LAMARCHE J,SPANNER G,et al.Chemical energy storage system for SEGS solar power plant[R].Pacific Northwest Laboratory,PNL-7709,1991. 被引量:1
  • 6LOVEGROVE K,LUZZI A,SOLDIANI 1,et al.Developing ammonia based thermochemical energy storage for dish power plants[J].Solar Energy,2004,76:331-337. 被引量:1
  • 7STE1NFELD A.Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions[J].International Journal of Hydrogen Energy,2002,27:611-619. 被引量:1
  • 8LAING D,LEHMANN D.Test results of concrete thermal energy storage for parabolic trough power plants[J].Journal of Solar Energy Engineering,2009,131:041007(6 pages). 被引量:1
  • 9TAMME R,LAING D,STEINMANN W D.Advanced thermal energy storage technology for parabolic trough[J].ASME Journal of Solar Energy Engineering,2004,126:794-800. 被引量:1
  • 10REILLY H E,KOLB W J.Evaluation of molten salt power tower technology based on the experience of solar two[R].SANDIA Report SAND2001 -3674,2001. 被引量:1

共引文献102

同被引文献35

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部