期刊文献+

孔结构对热解酚醛树脂制备碳纳米管的影响 被引量:5

Effect of Pore Structure on Preparation of Carbon Nanotubes via Pyrolysis of Phenolic Resin
原文传递
导出
摘要 以不同的酚醛树脂为原料经催化热解法制备碳纳米管时结果差异较大,为阐明存在的问题及原因,以酚醛树脂为碳源、硝酸铁为催化剂前驱体,通过催化酚醛树脂裂解的方法制备碳纳米管,研究了酚醛树脂中孔结构对合成碳纳米管的影响。采用X射线衍射、扫描电子显微镜和透射电子显微镜对酚醛树脂热解产物的物相组成及显微结构进行了分析。结果表明:1)碳纳米管仅生长在固化后酚醛树脂的大气孔(50~1 000μm)中,其直径约为40~100纳米,长度可达几百微米,其它位置基本无碳纳米管的生成;2)较大的气孔(50~1 000μm)可为碳纳米管的生长提供相对充足的碳源和生长空间,继而有利于碳纳米管的生成;3)较小的气孔(30μm以下)由于难以满足该条件而基本无碳纳米管的生成。碳纳米管的产率与酚醛树脂固化后形成气孔的大小有关,采用固化后能形成较大孔径的酚醛树脂为碳源可以提高碳纳米管的产率。 To clarify the yield change of carbon nanotubes (CNTs) prepared by a phenolic resin catalytic pyrolysis method, CNTs were synthesized via catalytic pyrolysis with two different kinds of phenolic resins and ferric nitrate as a catalyst precursor in Ar atomosphere at 1 000℃ for 3 h. The effect of pore structure on the formation of CNTs was investigated. The phase and microstructure of the final products were characterized by X-ray diffraction, field emission-scanning electron microscopy and transmission electron microscopy. The results indicate that CNTs with 40-100 nm in diameter and several hundred micronmeters in length are only prepared in the pores with the size of 50-1 000μm formed during the curing process rather than other sites. Compared to the small pores without CNTs formation, large pores can offer sufficient carbon source and space for CNTs growth due to the appearance of CNTs only in large pores of pyrolyzed phenolic resin. The yield of CNTs depends on the pore size in the cured phenolic resin. The yield of CNTs can be improved when phenolic resin with large pores is used in the cured precursor as a carbon source.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2017年第3期416-421,共6页 Journal of The Chinese Ceramic Society
基金 国家自然科学基金面上项目(51272188 51472184 51472185) 湖北省自然科学基金项目(2013CFA086) 国家"973"计划前期研究专项(2014CB660802) 湖北省科技支撑计划对外科技合作项目(2013BHE002)
关键词 碳纳米管 孔结构 酚醛树脂 催化剂 carbon nanotube pore structure phenolic resin catalysts
  • 相关文献

参考文献5

二级参考文献33

  • 1汪贤,朱伯铨,李享成,马铮,魏莹.金属共掺杂对树脂炭结构及抗氧化性能的影响[J].硅酸盐学报,2015,43(3):316-321. 被引量:6
  • 2邓晓燕,张志焜.Ni(NO_3)_2·6H_2O的热分解机理及非等温动力学参数[J].青岛科技大学学报(自然科学版),2006,27(1):24-27. 被引量:9
  • 3涂建华,张利波,彭金辉,普靖中,张世敏.木质陶瓷的X射线衍射和喇曼光谱研究[J].无机材料学报,2006,21(4):986-992. 被引量:12
  • 4郭巍,安胜利.二茂铁的加入对铝碳耐火材料性能的影响[J].硅酸盐通报,2007,26(5):1011-1015. 被引量:14
  • 5Jiang W.,Chen S.,Chen Y. Nanocomposites from phenolicresin and various organo-modified montmorillonites : Preparationand thermal stability [ J]. Appl. Polym. Sci. , 2006, 102(6):5333-5336. 被引量:1
  • 6Cevdet Kaynak, C. Cem Tasan, et al. Effects of production pa-rameters on the structure of resol type phenolic resin/layered sili-cate nanocomposites[ J]. European Polymer Journal,2006,42(8): 1908-1921. 被引量:1
  • 7Shihai Xu, Fengying Zhang, Qing Kang, et al. The effect ofmagnetic field on the catalytic graphitization of phenolic resin inthe presence of Fe-Ni[J]. Carbon, 2009, 47(14) : 3233-3237. 被引量:1
  • 8Oya A, Yoshida S,Alcaniz-Monge J, et al. Formation of meso-pores in phenolic resin-derived carbon fiber by catalytic activationusing cobalt[J]. Carbon, 1995,33(8) : 1085-1090. 被引量:1
  • 9Luo Ming, Li Yawei, Shaobai Sang, et al. In situ formation ofcarbon nanotubes and ceramic whiskers in A1203-C refractorieswith addition of Ni-catalyzed phenolic resin [ J ]. Materials Sci-ence &Engineering A,2012,558 : 533-542. 被引量:1
  • 10loan Stamatin, Adina Morozan, Anca Dumitru, et al. The syn-thesis of multi-walled carbon nanotubes ( MWNT) by catalyticpyrolytic carbon of the phenol-formaldehyde resins[ J]. PhysicaE, 2007,37(1-2) : 44^8. 被引量:1

共引文献20

同被引文献27

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部