期刊文献+

基于子空间分析的人脸识别算法 被引量:4

Face Recognition Algorithm Based on Subspace Analysis
下载PDF
导出
摘要 本文以人脸识别为目标,重点分析基于子空间分析的人脸特征提取技术.首先介绍人脸识别系统的构成,其次分析人脸识别的关键技术,如人脸检测、特征提取和图像预处理等,重点分析人脸识别的各种算法,根据小波在对图像数据矩阵的处理的高效性,以及LDA训练样本维数少的缺陷,PCA不能利用数据的高阶统计特性,本文将这三种算法进行融合,并用MATLAB进行仿真实验,实验证明该方法的有效性. When it comes to the face recognition, this paper exceptionally focuses on the facial feature extraction based on subspace analysis. Firstly, this paper introduces the constitution of the face recognition system, and then analyses the key technologies, such as the face detection, feature extraction, and image pretreatment processing. It mainly analyses the various face recognition algorithms. According to the high efficiency of wavelet in the processing of image data matrix and the shortcoming of less dimension of the LDA training sample, PCA cannot use higher order statistical properties of the data. Combining these three algorithms, this paper puts forward the improved recognition method. Simulation experiments with MATLAB are carried out and the results show the effectiveness of the method.
作者 江华丽 JIANG Hua-Li(Mirman Institute of Science and Technology, Fujian Normal University, Quanzhou 362332, Chin)
出处 《计算机系统应用》 2017年第2期151-157,共7页 Computer Systems & Applications
基金 福建省教育厅中青年项目(JAT160673) 福建省高校创新创业教育改革项目(SJZY-2015-02)
关键词 人脸识别 特征提取 融合算法 face recognition feature extraction fusion algorithm
  • 相关文献

参考文献11

二级参考文献93

  • 1JENKINS R, BURTON A M.100% accuracy in automatic face re-cognition[J].Science,2008,319(25):435. 被引量:1
  • 2XIE X, LAM K M.Gabor-based kernel PCA with doubly nonlinear mapping for face recognition with a single face image[J].IEEE Trans on Image Process,2006,15(9):2481-2492. 被引量:1
  • 3PRINCE S J D, ELDER J.Tied factor analysis for face recognition across large pose differences[J].IEEE Trans on Pattern Anal Mach Intell,2008,30(6):970-984. 被引量:1
  • 4ZHANG Xiao-zheng, GAO Yong-sheng.Face recognition across pose:a review[J].Pattern Recognition,2009,42(11):2876-2896. 被引量:1
  • 5CHAI Xiu-juan, SHAN Shi-guang, CHEN Xi-lin, et al.Local linear regression(LLR) for pose invariant face recognition[J].IEEE Trans on Image Process,2007,16 (7):1716-1725. 被引量:1
  • 6ABATE A F, NAPPI M, RICCIO D, et al.2D and 3D face recognition:a survey[J].Pattern Recognition Lett,2007,28 (14):1885-1906. 被引量:1
  • 7BEYMER D J.Face recognition under varying pose[R].Cambridge, MA:Massachusetts Institute of Technology,1993. 被引量:1
  • 8SINGH R, VATSA M, ROSS A, et al.A mosaicing scheme for pose-invariant face recognition[J].IEEE Trans on Syst, Man, Cybern B, Cybern,2007,37(5):1212-1225. 被引量:1
  • 9GROSS R, MATTHEWS I, BAKER S.Appearance-based face recognition and light-fields[J].IEEE Trans on Pattern Anal Mach Intell,2004,26(4):449-465. 被引量:1
  • 10Phillips P J,Scruggs W T,O’Toole A J,et al.FRVT2006and ICE 2006Large-Scale Experimental Results[J].Pattern Analysis and Ma-chine Intelligence,IEEE Transactions on,2010,32(5):831-846. 被引量:1

共引文献20

同被引文献20

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部