期刊文献+

非结构化数据特征建模关键技术研究 被引量:6

Study on Key Technology of Unstructured Data Modeling Features
下载PDF
导出
摘要 在智能电网大数据中,非结构化数据占据比例最大,且增速是结构化数据的10~50倍,已成为智能电网大数据处理的关键技术。针对非结构化数据存在数量巨大、模式滞后问题,基于现实数据存在的诸多特征,提出来非结构化数据特征模型建模。文中重点论述了基于智能电网大数据的非结构化数据特征建模的关键技术,包括原始数据以及特征数据的存储、查询以及数据可视化、特征空间的选取等。 In the smart grid data,the unstructured data occupies the largest proportion,and its growth rate is 10 to 50 times of the structured data and the processing of the data has become the key technology in the processing of smart grid big data.In view of the large quantity and hysteresis mode of the unstructured data and based on many features of the real data,this paper proposes to build the model for the unstructured data.This paper mainly discusses the key technical features of the unstructured data modeling based on smart grid big data are mainly discussed,covering storage,query and data visualiza-tion and feature space selection of the original data and feature data.
出处 《电网与清洁能源》 北大核心 2017年第1期13-17,23,共6页 Power System and Clean Energy
基金 国家高技术研究发展计划(863计划)资助项目(2015AA050202) 福建省电力有限公司科技项目(521320135095)~~
关键词 智能电网大数据 非结构化数据 特征建模 关键技术 smart grid big data unstructured data feature modeling key technology
  • 相关文献

参考文献7

二级参考文献85

  • 1李未,郎波.一种非结构化数据库的四面体数据模型[J].中国科学:信息科学,2010,40(8):1039-1053. 被引量:9
  • 2殷志良,刘万顺,杨奇逊,秦应力.基于IEC 61850的通用变电站事件模型[J].电力系统自动化,2005,29(19):45-50. 被引量:72
  • 3徐燕伟,杜树新.J2EE构架下电能质量监控系统的设计与实现[J].中国电力,2006,39(12):72-75. 被引量:11
  • 4辛耀中,王永福,任雁铭.中国IEC 61850研发及互操作试验情况综述[J].电力系统自动化,2007,31(12):1-6. 被引量:78
  • 5Hristidis V, Gravano L, Papakonstantinou Y. Efficient IR-style keyword search over relational databases. In: Proc. of the 29th Int'l Conf. on Very Large Data Bases (VLDB 2003). New York: ACM Press, 2003. 850-861. 被引量:1
  • 6Bhalotia G, Hulgeri A, Nakhe C, Chakrabarti S, Sudarshan S. Keyword searching and browsing in databases using BANKS. In: Proc. of the 18th Int'l Conf. on Data Engineering (ICDE 2002). Dallas: IEEE Computer Society, 2002.431-440. 被引量:1
  • 7Shao F, Guo L, Botev C, Bhaskar A, Chettiar M, Yang F. Efficient keyword search over virtual XML views. In: Proc. of the 33rd Int'l Conf. on Very Large Data Bases (VLDB 2007). New York: ACM Press, 2007. 1057-1068. 被引量:1
  • 8Guo L, Shao F, Botev C, Shanmugasundaram J. XRANK: Ranked keyword search over XML documents. In: Proc. of the 23rd Int'l Conf. on Management of Data (SIGMOD 2003). New York: ACM Process, 2003. 16-27. 被引量:1
  • 9Levy AY, Rajaraman A, Ordille JJ. Querying heterogeneous information sources using source descriptions. In: Proc. of the 22nd Int'l Conf. on Very Large Data Bases (VLDB 1996). San Fransisco: Morgan Kaufmann Publishers, 1996. 251-262. 被引量:1
  • 10Qiu F, Cho J. Automatic identification of user interest for personalized search. In: Proc. of the 15th Int'l World Wide Web Conf. (WWW2006). New York: ACM Press, 2006. 727-736. 被引量:1

共引文献123

同被引文献84

引证文献6

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部