期刊文献+

WNN-EDXRF方法测定地质样品中铁、钛元素含量 被引量:1

WNN-EDXRF Approach to Measure the Contents of Iron and Titanium of Geological Samples
下载PDF
导出
摘要 地质样品中各元素的定量分析是工矿业生产中重要的一环,为使对地质样品中各元素的定量分析更为精确、简便、行之有效,提出了一种小波神经网络(WNN)结合EDXRF分析技术的一种新的定量分析方法。先对样品进行预处理,进行化学分析,运用EDXRF分析技术得到的X射线强度计数,样品的一部分训练网络,训练过程中进一步研究了小波神经网络中动量因子和小波基函数个数对网络性能的影响。将另一部分样本输入网络进行预测并与化学分析值相比较。最终结果表明:它能够很好地描述各元素X射线强度计数与含量之间的非线性关系,可以得到比较精确的各元素预测值。 It is an important part of mine industry to measure contents in geological sample. For finding a precise, easy and feasible approach to measure contents in geological sample, this article proposed an advanced prediction technique method by combining wavelet neural network (WNN) and EDXRF. We need to process the geological sample first and make a chemical analysis for obtaining the strength of x - ray by energy - dispersive X - ray fluorescence (EDXRF). A part of samples are used to train the network, during the training process, we studied the affections of factor of momentum and the amount of wavelet functions with the network, and then inputted another part of samples into the network for predicting, compared with the chemical analysis value. The final results show that it is able to express the linearity between the content and during the EDXRF analysis and obtain more precise prediction for elements.
出处 《核电子学与探测技术》 CAS 北大核心 2016年第9期923-926,共4页 Nuclear Electronics & Detection Technology
基金 国家自然科学基金(41274109) 四川省青年科技创新团队(2015JTD0020)资助
关键词 能量色散x射线荧光光谱法 小波神经网络 地质样品 EDXRF Wavelet Neural Network Model Geological Sample
  • 相关文献

参考文献7

二级参考文献64

共引文献56

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部