期刊文献+

遗传算法优化的BP神经网络在EDXRF中对钛铁元素含量的预测 被引量:8

BP Neural Network Optimized by Genetic Algorithm Approach for Titanium and Iron Content Prediction in EDXRF
下载PDF
导出
摘要 在能量色散X荧光分析(EDXRF)技术中,受均匀效应、颗粒效应和基体效应等的干扰,定量分析精度受到影响。本文针对这一问题提出了遗传算法(GA)优化BP神经网络(GA-BP)的混合算法,该算法无需考虑元素浓度和射线强度之间的复杂关系。遗传算法优化BP神经网络的目的是为了获得更好的网络初始权值和阈值,其基本思想是:将初始化的BP神经网络均方根误差的倒数编码为遗传算法中个体的适应度;初始的权值和阈值用遗传算法中的个体代替,然后通过选择、交叉和变异操作挑选出最优个体,最后通过解码用最优的权值和阈值创建一个新的BP网络模型。攀枝花矿区5类矿样中钛和铁含量的整体预测和分类预测实验表明,分类预测效果远好于整体预测。预测值与化学分析值比较结果表明,其中76.7%的样品相对误差小于2%,表明了该方法在元素间基体效应校正上的有效性。 The quantitative elemental content analysis is difficult due to the uniform effect ,particle effect and the element matrix effect ,etc ,w hen using energy dispersive X‐ray fluorescence (EDXRF ) technique .In this paper ,a hybrid approach of genetic algorithm (GA ) and back propagation (BP ) neural network was proposed without considering the complex relationship between the concentration and intensity .The aim of GA optimized BP was to get better network initial weights and thresholds .The basic idea was that the reciprocal of the mean square error of the initialization BP neural network was set as the fitness value of the individual in GA ,and the initial weights and thresholds were replaced by individuals ,and then the optimal individual was sought by selection ,crossover and mutation operations ,finally a new BP neural network model was created with the optimal initial weights and thresholds .The calculation results of quantitative analysis of titanium and iron contents for five types of ore bodies in Panzhi‐hua Mine show that the results of classification prediction are far better than that of overall forecasting ,and relative errors of 76.7% samples are less than 2% compared with chemical analysis values ,which demonstrates the effectiveness of the proposed method .
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2015年第6期1143-1148,共6页 Atomic Energy Science and Technology
基金 国家杰出青年科学基金资助项目(41025015) 国家自然科学基金资助项目(41274109) 四川省青年科技创新研究团队资助项目(2011JTD001) 四川省科技支撑计划资助项目(2013FZ0022)
关键词 能量色散X荧光分析 定量分析 BP神经网络 遗传算法 EDXRF quantitative analysis BP neural network genetic algorithm
  • 相关文献

参考文献12

  • 1SUMPUN W, PHADOONG B, THIPPAWAN S. Determination of impurities in ilmenite ore and residues after leaching with HCl-ethylene glycol by energy dispersive X-ray fluorescence (EDXRF) spectrometry[J]. Hydrometalturgy, 1997, 45(1-2): 161-167. 被引量:1
  • 2GONZALEZ-FERNANDEZ O, QUERALT I, CARVALHO M L, et al. Elemental analysis of mining wastes by energy dispersive X-ray fluo- rescence (EDXRF)[J]. Nuclear Instruments and Methods in Physics Research B, 2007, 262(1): 81-86. 被引量:1
  • 3NATARAJAN V, PORWAL N K, BABU Y, et al. Direct determination of metallic impurities in graphite bY EDXRF[J]. Applied Radiation and Isotopes, 2010, 68(6): 1 128-1 131. 被引量:1
  • 4RICHARD M R. Corrections for matrix effects in X-ray fluorescence analysis: A tutorial [J]. Speetrochimiea: Acta Part B, 2006, 61(7): 759- 777. 被引量:1
  • 5曹利国.x射线荧光分析中的综合灵敏度因子KIo和准绝对测量[J].核技术,1987,10(7):15-21. 被引量:1
  • 6曹利国,丁益民,黄志琦.能量色散X荧光方法[M].成都:成都科技大学出版社,1998:182-274. 被引量:1
  • 7GUO P L, WANG J Q, LI X J, et al. Combina- tion of pattern recognition with micro-PIXE for the source indentification individual aerosol parti- cles[J]. Applied Specscopy, 2000, 54(6): 807- 811. 被引量:1
  • 8LUO L Q. An algorithm combining neural net- works with fundamental parameters [J]. X-Ray Spectrometry, 2002, 31(4): 332-338. 被引量:1
  • 9李哲,庹先国,穆克亮,王洪辉,钟红梅.矿样中钛铁EDXRF分析的基体效应和神经网络校正研究[J].核技术,2009,32(1):35-40. 被引量:19
  • 10宋梅村,蔡琦.基于BP神经网络的反应堆功率预测[J].原子能科学技术,2011,45(10):1242-1246. 被引量:7

二级参考文献8

共引文献26

同被引文献74

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部