期刊文献+

基于主元分析的冷水机组传感器故障识别 被引量:1

PCA-based Fault Detection,Reconstruction and Identification for Sensors in the Chiller
下载PDF
导出
摘要 测量数据的真实性和准确性是冷水机组安全运行和优化节能的必要条件。长期使用条件下,传感器故障极易发生而且很难识别。在基于主元分析的传感器故障研究中,以Q统计量为检测指标的常规故障检测、诊断与数据重构在故障源的识别上存在一定误判。采用基于数据重构的枚举甄别方法,分析了传感器故障检测、数据重构及故障识别的算法流程,并以实际工程数据进行验证。结果表明,问题传感器的重构数据的故障识别指标变化最明显,可以准确鉴别故障传感器。 The real and exact measurement data are the essential condition for the safety operation and optimal conservation for chillers. Unfortunately, the sensor faults are occurred easily and identified hardly due to the long term operation period. There are some misjudgments in the traditional method of fault detection, diagnosis and reconstruction by Q-statistics based on Principal Component Analysis. A reconstruction-based fault identification method by Q-statistics is presented and the flowchart for the sensor Fault detection, reconstruction and identification is demonstrated in this paper. Results show that since the fault identification index of reconstructed data is changed hugely, the faulty sensor is isolated easily when a sited data set was employed to validate the presented method.
出处 《建筑热能通风空调》 2017年第2期33-36,共4页 Building Energy & Environment
基金 湖北省教育厅科学技术研究项目(B2016361) 武汉市科技局科技创新平台建设计划(2015061705011607) 武汉市教育科学"十三五"规划2016年度重点(专项)课题(2016A125) 武汉商学院校级教学研究项目(2016Y010)
关键词 冷水机组 传感器故障 主元分析 数据重构 故障识别 chiller, sensor fault, principal component analysis, fault detection, data reconstruction, fault identification
  • 相关文献

参考文献7

二级参考文献138

共引文献128

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部