期刊文献+

基于小波去噪和神经网络的冷水机组故障诊断 被引量:22

Fault Diagnosis of Chillers Based on Neural Network and Wavelet Denoising
下载PDF
导出
摘要 对基于神经网络方法的冷水机组故障监测效率取决于训练数据和被测数据的质量问题进行了研究。采用小波变换的方法剔除测量数据中的噪声,提高数据质量,从而提高冷水机组故障诊断效率。结果表明:采用小波变换使得各个水平故障的检测效率均得到提高,尤其水平一的故障检测效率提高明显。故障水平一检测率的提高能够及时的辨别冷水机组的故障,从而采用措施防止故障进一步恶化,对降低能源消耗、提高系统的可靠性以及保证室内舒适性具有重要的意义。通过利用ASHRAE Project提供的数据对故障诊断与检测(fault detection and diagnosis)策略进行验证,检测率明显提高。 Chiller fault detection based on neural network is a data - based analysis method. The fault detection efficiency relies on the quality of the training data and the mesasured data. The wavelet transfer method which can remove the measurement nosise is used to im- prove the detection efficiencies of chiller. The results show that wavelet transfer make the detection efficiencies of fault level improved, es- pecially the first level. The increase of the first level detection rate will be able to timely identify the chiller fault, and take the measures to prevent further deterioration of chiller fault, which is of important significance to reduce energy consumption and improve the reliability of the air-conditioning system and ensure the indoor thermal comfort. The FDD ( fault detection and diagnosis) strategy is validated through using ASHRAE Project data, which shows that the detection rate is improved obviously.
出处 《制冷学报》 CAS CSCD 北大核心 2016年第1期12-17,共6页 Journal of Refrigeration
基金 国家自然科学基金(51328602)资助项目 2013年压缩机技术国家重点实验室开放基金项目(230031) 供热供燃气通风及空调工程北京市重点实验室研究基金资助课题(NR2016K02)项目资助~~
关键词 冷水机组 故障检测与诊断 神经网络 小波分析 贝叶斯正则化 chiller fault detection and diagnosis BP neural network wavelet denoising bayesian regularization
  • 相关文献

参考文献16

  • 1Zhou Q, Wang S, Xiao F. A novel strategy for the fault detection and diagnosis of centrifugal chiller systems [ J ]. HVAC & R Research, 2009, 15( 1 ) : 57-75. 被引量:1
  • 2Frank P M. Analytical and qualitative model-based fault diagnosis a survey and some new results [ J ]. European Journal of Control, 1996, 2( 1 ) : 6-28. 被引量:1
  • 3Wang S W, Cui J T. A robust fault detection and diagnosis strategy for centrifugal chillers[J]. HVAC & R Research, 2006, 12(3) : 407-428. 被引量:1
  • 4Wang S W, Cui J T. Sensor-thult detection, diagnosis and estimation for centrifugal chiller systems using principalcomponent analysis method [ J ]. Applied Energy, 2005, 82(3) : 197-213. 被引量:1
  • 5Chen Y M, Lan L L. A fault detection technique for air- source heat pump water chiller/heaters [ J ]. Energy and Buildings, 2009, 41 (8) : 881-887. 被引量:1
  • 6李冠男,胡云鹏,陈焕新,黎浩荣,李炅,胡文举.基于SVDD的冷水机组传感器故障检测及效率分析[J].化工学报,2015,66(5):1815-1820. 被引量:26
  • 7Zhao Y, Wang S W, Xiao F. Pattern recognition-based chillers fault detection method using Support Vector Data Description (SVDD) [ J ]. Applied Energy, 2013, 112 : 1041-1048. 被引量:1
  • 8Luo H, Wang Y R, Cui J. A SVDD approach of fuzzy classification for analog circuit fault diagnosis with FWT as preprocessor [ J ]. Expert Systems with Applications, 2011, 38(8) : 10554-10561. 被引量:1
  • 9Chang S G, Yu B, Vetterli M. Adaptive wavelet threshol- ding for image denoising and compression[ J]. IEEE Trans Image Process, 2000, 9(9) : 1532-1546. 被引量:1
  • 10Du Z, Jin X, Yang Y. Wavelet neural network-based fault diagnosis in air-handling units [ J]. HVAC & R Research, 2008, 14(6) : 959-973. 被引量:1

二级参考文献60

共引文献329

同被引文献127

引证文献22

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部