摘要
Lucas数列{Ln}的模数列是纯周期数列。本文根据模数列的定义,利用初等数论的知识,讨论Lucas数列的模数列的周期性的一个性质,证明:当m1,m2是不同的正整数时,Lucas数列的模数列{bn(m1)}和{bn(m2)}的最小正周期分别是T1,T2,则模数列{bn[m1,m2]}的最小正周期为[T1,T2]。
The Modular Sequence of Lucas Sequence is the periodic sequence as well as a simple periodic sequence. According to the definition of modular sequence, we discussed a character of the period of modular sequence of Lucas sequence and obtained a prop-erty :If m1 and m2 are different positive integers, and the least positive periods of the modular sequence {(bn(mj)} and {bn( m2) of Lu-cas sequence Ln are T1 and T2 respectively, then the least positive period of the modular sequence { bn[m2 ,m2]}is T1 ,T 2.
出处
《西华大学学报(自然科学版)》
CAS
2017年第1期47-49,共3页
Journal of Xihua University:Natural Science Edition
基金
国家自然科学基金资助项目(11501419)
陕西省教育厅科学研究计划专项项目(15JK1262)
陕西省教育厅科学研究计划专项项目(15JK1247)
陕西省军民融合项目(16JMR11)
关键词
LUCAS数列
模数列
最小正周期
最小公倍数
Lucas sequence
modular sequence
least positive period
least common multiple