期刊文献+

iBeacon网络下的区域化双层定位体系 被引量:3

Localization of Double Layer Location System Based on IBeacon Network
下载PDF
导出
摘要 针对许多传统室内大空间定位方法难以同时提高定位实时性和精度的问题,提出一种i Beacon网络下的区域化双层定位体系.该体系由两种优化后的室内定位算法与i Beacon双层定位架构组成.前者通过空间区域化概率匹配算法实现快速区域定位,利用区域内加权质心算法实现高精度区域内定位;后者通过i Beacon识别码对定位节点进行两级划分,利用两级节点的不同组合实现不同的定位层次.该体系通过i Beacon双层定位架构将处于不同定位层次的两种室内定位算法相结合,可同时提升实时性和精度.实验表明,在相近定位精度条件下,所提定位体系的实时性比K最近邻算法、加权K最近邻算法分别提高55.29%和54.18%.定位精度比基于RSSI的四边测距改进加权质心算法提高37.35%.该体系具有高精度和低成本优势,可广泛用于大型建筑室内导航及行人轨迹探测等领域,经济和社会应用价值高. In many traditional indoor large space localization method,it is difficult to improve both positioning accuracy and real-time performance.This paper proposes a localization system based on i Beacon network.The system composes of two optimized indoor positioning algorithms,and has an i Beacon dual layer positioning architecture.The former achieves rapid location with an algorithm that matchesa region of space probability,and achieves high precision within each region in the area with a weighted centroid algorithm.The latter,based on the i Beacon identification code,is divided into two levels of node localization.Different levels of positioning is achieved by using different combinations of these nodes.In the positioning process,the system uses the i Beacon double layer positioning architecture at different levels of the two positioning algorithms to improve accuracy of real-time positioning.Experimental results show that,with similar accuracy,the proposed system improves the real-time performance by 55.29% and 54.18% respectively compared with K-nearest neighbor(KNN) and weighted K-nearest neighbor(WKNN).Positioning accuracy is improved by 37.35% compared with an improved weighted centroid algorithm based on RSSI.The proposed system has high economic and social values as it can be used for navigation in large buildings and detect pedestrian paths.
出处 《应用科学学报》 CAS CSCD 北大核心 2017年第1期51-62,共12页 Journal of Applied Sciences
基金 国家"863"高技术研究发展计划基金(No.2013AA03A1121 No.2013AA03A1122) 上海市教委重点学科基金(No.J50104) 上海市科委项目培育基金(No.D.72-0107-00-024)资助
关键词 iBeacon 接收信号强度 室内定位 双层定位 概率匹配 i Beacon received signal strength indication(RSSI) indoor positioning double positioning probability matching
  • 相关文献

参考文献4

二级参考文献36

  • 1吴秋平,万德钧,王庆.车辆组合导航系统中的滤波新算法[J].中国惯性技术学报,1999,7(2):23-25. 被引量:3
  • 2房建成,申功勋,万德钧.一种自适应联合卡尔曼滤波器及其在车载GPS/DR组合导航系统中的应用研究[J].中国惯性技术学报,1998,6(4):2-7. 被引量:19
  • 3LUJAN S, SUARDIAZ-MURO J, CABRERA-LozOYA A, et al. Deeploc: discreet indoor people location application [C]//4th IFIP International Conference on New Technologies, Mobility and Security. 2011: 1-5. 被引量:1
  • 4BHAGWAT P. Bluetooth: technology for short-range wireless Apps [J]. IEEE Internet Computing, 2001, 5(3): 96-103. 被引量:1
  • 5BIEBER G, VOSKAMPAND J, URBAN B. Activity recognition for everyday life on mobile phones [J]. Lecture Notes in Computer Science, 2009, 5615: 289- 296. 被引量:1
  • 6Bluetooth Special Interest Group. Bluetooth Specification Version 4.0 [EB/OL]. [2012-04-28]. https://www.bluetooth.org. 被引量:1
  • 7ANASTASI G, BANDELLONI R, CONTI M, et al.Experi- menting an indoor Bluetooth-based positioning service [C]// Proceedings of the 23rd International Conference on Distributed Computing Systems Workshops. 2003: 480-483. 被引量:1
  • 8CHAWATHE S S. Beacon placement for indoor localization using Bluetooth [C]//11th Inter- national IEEE Conference on Intelligent Transpor- tation Systems. 2008: 980-985. 被引量:1
  • 9RODAS J, ESCUDERO C J, IGLESIA D I. Bayesian filtering for a Bluetooth positioning system [C]// IEEE International Symposium on Wireless Commu- nication Systems. 2008: 618-622. 被引量:1
  • 10DIAZ J J M, DE MAUES R A, SOARES R B, et al. BluePass: an indoor Bluetooth-based localization system for mobile applications [C]//2010 IEEE Symposium on Computers and Communications. 2010: 778-783. 被引量:1

共引文献108

同被引文献30

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部