期刊文献+

一种自动的高分辨率遥感影像道路提取方法 被引量:24

Automatic road extraction method for high-resolution remote sensing images
下载PDF
导出
摘要 从高分辨率遥感影像中提取道路有着非常重要的意义,但是受到遥感影像噪声、复杂的自然场景和已有算法的局限性的影响,道路提取有待于进一步研究.近些年来水平集方法被用于提取道路,但是初始水平演化曲线的确定却是一个大的难点.笔者提出一种自动的水平集分割方法,并将其用于道路检测中.首先,将卷积神经网络用于道路的粗分类.然后,利用形状特征和孔洞填充方法得到比较准确的道路区域.在此基础上,利用张量投票来提取道路的交叉口,并将其轮廓作为水平集演化的初始曲线进行水平集分割.最后,结合卷积神经网络分类和水平集分割的优势,得到比较完整的道路区域,并保持了道路的边缘.实验结果表明,该方法能自动地提取准确完整的道路区域. Road extraction from high-resolution satellite images is very important. Due to image noise, the natural scene complexity, and the extraction algorithms limitations, it still needs to be further researched. In recent years, level set evolution has been used to extract the road, but it is difficult to automatically generate initial level curves for the level set evolution (LSE). In this paper, we propose an automatic approach to the generation of initial level curves and use it to extract the road. Firstly, the convolutionat neural network(CNN) is used to classify the road or nonroad, then shape features are adopted to filter nonlinear features to get the accurate road region. And on this basis, we exploit tensor voting to detect the road junctions and utilize them as initial level curves; finally we fuse the results obtained by the CNN and LSE. Experiments show that this algorithm can get an accurate and complete road.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2017年第1期100-105,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(61472302 61272280 U1404620 41271447) 教育部新世纪优秀人才支持计划资助项目(NCET-12-0919) 中央高校基本科研业务费专项资金资助项目(K5051203020 JB150313 K5051303018 BDY081422) 陕西省自然科学基金资助项目(2014JM8310 2010JM8027) 西安市科技局资助项目(CXY1441(1)) 地理信息工程国家重点实验室开放研究基金资助项目(SKLGIE2014-M-4-4)
关键词 卷积神经网络 形状特征分析 张量投票 水平集分割 信息融合 eonvolutional neural network(CNN) shape feature tensor voting level set information fusion
  • 相关文献

参考文献4

二级参考文献34

  • 1汪闽,骆剑承,周成虎,明冬萍,陈秋晓,沈占峰.结合高斯马尔可夫随机场纹理模型与支撑向量机在高分辨率遥感图像上提取道路网[J].遥感学报,2005,9(3):271-276. 被引量:43
  • 2崔屹.图像处理和分析-数学形态学方法及应用[M].北京:科学出版社,2000.98-111. 被引量:2
  • 3章毓晋.图像分析[M].北京:清华大学出版社,2005:109-113. 被引量:24
  • 4Gautama S, Goenmn W, and D'Haeyer J. Robust detection of road junctions in VHR images using an improved ridge detector[C]. The International Archives of the Photo- grammetry, Remote Sensing and Spatial Information Sciences Istanbul, Turkey, 2004: 815-819. 被引量:1
  • 5Ravanbakhsh M, Heipke C, and Pakzad K. Knowledge-based road junction extraction from high-resolution aerial images [C]. 2007 Urban Remote Sensing Joint Event, Paris, France, 2007:1 8. 被引量:1
  • 6Iisaka J, Sakurai-Amano T, and Lukowski T I. Automated detection of road intersections from ERS-1 SAR irnagery[C]. International Geoscience and Remote Sensing Symposium, Florence, Italy, 1995:676 678. 被引量:1
  • 7Chiang Yao-yi, Knoblock C A, Shahabi C, et al: Automatic and accurate extraction of road intersections from raster maps[J]. GeoifoT"matica, 2009, 13(2): 121-157. 被引量:1
  • 8Barsi A and Heipke C. Detecting road junctions by artificial neural networks [C]. Remote Sensing and Data Fusion over Urban Areas, 2nd GRSS/ISPRS Joint Workshop on, Berlin, Germany, 2003:129 132. 被引量:1
  • 9Negri M, Gamba P, Lisini G, et al: Junction-aware extraction and regularization of urban road networks in high-resolution SAR images [J]. IEEE Transaction, on Geoscience and Remote Sensing, 2006, 44(10): 2962-2971. 被引量:1
  • 10Hu Jiu-xiang, Anshuman R, John C, et al: Road network extraction and intersection detection from aerial images by tracking road footprints[J]. IEEE Transactions on Geoscienee and Remote Sensing, 2007, 45(12): 4144 4157. 被引量:1

共引文献81

同被引文献167

引证文献24

二级引证文献186

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部