期刊文献+

复杂背景下基于深度卷积神经网络的森林火灾识别 被引量:33

Forest Fire Recognition Based on Deep Convolutional Neural Network Under Complex Background
下载PDF
导出
摘要 针对森林火灾的特点,提出并设计一种基于深度学习的森林火灾图像识别方法。通过实验,给出用于复杂背景下森林火灾识别的深度卷积神经网络结构,并对该结构进行训练和测试。并且,针对小样本林火识别存在识别率低的问题,提出一种参数替换方法。结果表明,该方法具备较高的正确率,正确率达到98%。同时网络可自动提取特征,无需对输入图像进行复杂预处理,克服了传统算法许多固有的缺点,将其应用在森林火灾识别领域取得了很好的效果。 According to the characteristics of forest fire,a forest fire image recognition method based on deep learning is proposed and designed. The structure of convolutional neural network( CNN) is given by experiment,which is used in forest fire recognition under the complex background,and it has been trained and tested. A parameters replacement method is presented for low recognition rate existing in small samples forest fire recognition. The results show that the method is of a high accuracy reaching to98%,it can extract features automatically,the input image doesn't need to pre-processing,and it overcomes many inherent shortcomings of traditional algorithm. Its application in the field of forest fire recognition achieves good results.
出处 《计算机与现代化》 2016年第3期52-57,共6页 Computer and Modernization
基金 国家自然科学基金资助项目(31200544) 中央高校基本科研业务费专项资金资助项目(YX2013-14) 高等学校博士学科点专项科研基金资助项目(20110014120012)
关键词 图像处理 森林火灾识别 深度学习 卷积神经网络 image processing forest fire recognition deep learning convolutional neural network
  • 相关文献

参考文献17

  • 1徐小军,郑健,郭尚芬.火灾图像探测的神经网络方法研究[J].计算机工程与设计,2008,29(13):3416-3418. 被引量:3
  • 2林宏,刘志刚,赵同林,张雁.基于视频的林火烟雾识别算法研究[J].安全与环境学报,2013,13(2):210-214. 被引量:11
  • 3沈诗林,于春雨,袁非牛,陈志斌,张永明.一种基于视频图像相关性的火灾火焰识别方法[J].安全与环境学报,2007,7(6):96-99. 被引量:24
  • 4Vipin V. Image processing based forest fire detection [ J ]. International Journal of Emerging Technology and Advanced Engineering, 2012,2(2) :87-95. 被引量:1
  • 5Angayarkkani K, Radhakrishnan N. Efficient forest fire de- tection system: A spatial data mining and image processing based approach [ J ]. International Journal of Computer Sci- ence and Network Security, 2009,9(3) :100-107. 被引量:1
  • 6Kandil M, Salama M. A new hybrid algorithm for fire vi- sion recognition [ C ]// EUROCON 2009. 2009: 1460- 1466. 被引量:1
  • 7Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [ J ]. Proceedings of the IEEE, 1998,86( 11 ) :2278-2324. 被引量:1
  • 8Szarvas M, Yoshizawa A, Yamamoto M, et al. Pedestrian detection with convolutional neural networks [ C ]// Pro- ceedings of the 2005 IEEE Intelligent Vehicles Symposium. 2005 : 224 -229. 被引量:1
  • 9Lawrence S, Giles C L, Tsoi A C, et al. Face recognition: A convolutional neural-network approach [ J ]. IEEE Trans- actions on Neural Networks, 1997,8 (1) :98-113. 被引量:1
  • 10Hubel D H, Wiesel T N. Receptive fields, binocular inter- action and functional architecture in the cat' s visual cortex [J]. The Journal of physiology, 1962,160(1):106-154. 被引量:1

二级参考文献71

  • 1任柯昱,唐丹,尹显东.基于字符结构知识的车牌汉字快速识别技术[J].计算机测量与控制,2005,13(6):592-594. 被引量:16
  • 2贾婧,葛万成,陈康力.基于轮廓结构和统计特征的字符识别研究[J].沈阳师范大学学报(自然科学版),2006,24(1):43-46. 被引量:11
  • 3袁非牛,廖光煊,张永明,刘勇,于春雨,王进军,刘炳海.计算机视觉火灾探测中的特征提取[J].中国科学技术大学学报,2006,36(1):39-43. 被引量:52
  • 4廉飞宇,付麦霞,张元.基于支持向量机的车辆牌照识别的研究[J].计算机工程与设计,2006,27(21):4033-4035. 被引量:12
  • 5Al-Hmouz R, S Challa. Intelligent Stolen Vehicle Detection using Video Sensing [C]// Proceeding of Information, Decision and Control. Adelaide, Qld., Australia. USA: IEEE, 2007: 302-307. 被引量:1
  • 6LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition [C]//Proc. IEEE, 1998. USA: IEEE, 1998: 2278-2324. 被引量:1
  • 7Steve Lawrence, C Lee Giles, Ah Chung Tsoi, Andrew D Back. Face Recognition: A Convolutional Neural Network Approach [J]. IEEE Trans. on Neural Networks (S1045-9227), 1997, 8(1): 98-113. 被引量:1
  • 8Lauer F, C Y Suen, Bloch G. A trainable featare extractor for handwritten digit recognition [J]. Pattern Recognition (S0031-3203), 2007, 40(6): 1816-1824. 被引量:1
  • 9Tivive, Fok Hing Chi, Bouzerdoum, Abdesselam. An eye feature detector based on convolutional neural network [C]// Proc. 8th Int. Symp. Signal Process. Applic. Sydney, New South Wales, Australia. USA: IEEE, 2005: 90-93. 被引量:1
  • 10Szarvas Mate, Yoshizawa Akira, Yamamoto Munetaka, Ogata Jun. Pedestrian detection with convolutional neural networks [C]//IEEE Intelligent Vehicles Symposium Proceedings. USA: IEEE, 2005: 224-229. 被引量:1

共引文献310

同被引文献217

引证文献33

二级引证文献191

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部