期刊文献+

MFCC与支持向量机在钱塘江涌潮检测中的应用 被引量:5

Application of Support Vector Machine and MFCC in the Detection of Qiantang River Tidal Bore
下载PDF
导出
摘要 为解决钱塘江涌潮检测难问题,提出了一种新的涌潮检测方法。首先,通过梅尔倒谱系数MFCC(Mel-Frequency Cepstral Coefficients)提取涌潮样本多维声学特征与非涌潮样本声学特征;然后,使用支持向量机(SVM)构建涌潮检测模型;最后,通过模型对输入的样本特征进行分类判断。与以采用线性预测倒谱系数(LPCC)提取声学特征方法或是采用BP神经网络构建检测模型相比,MFCC与支持向量机结合在涌潮检测的精度上有一定的提高。 In order to solve the problem of detecting Qiantang River tidal bore,this paper proposes a new detectionmethod for the tidal bore. At first,getting the sound of tidal bore and non-tidal bore Mel-frequency Cepstral Coeffi-cients(MFCCs)as the acoustic features. Then,using support vector machine(SVM)to construct a detection modelfor tidal bore. Finally,classifying input sample acoustic features by the model. Compared to using linear predictioncepstral coefficients(LPCC)as the acoustic features or constructing model by BP neural network,the new approachto detect tidal bore via the support vector machine(SVM)with the Mel-frequency Cepstral Coefficients(MFCCs)asthe acoustic features reach a higher recognition accuracy.
出处 《传感技术学报》 CAS CSCD 北大核心 2016年第11期1773-1778,共6页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(61374005) 浙江自然科学基金项目(LY14F030022)
关键词 声学识别 涌潮检测 支持向量机 MFCC声学特征 acoustic recognition bore detection SVM MFCC acoustic features
  • 相关文献

参考文献4

二级参考文献51

  • 1张庆宝,程浩忠,刘青山,郑季伟,倪东海.基于粗糙集属性约简算法和支持向量机的短期负荷预测[J].电网技术,2006,30(8):56-59. 被引量:30
  • 2Cortes C,Vapnik V.Support-vector networks[J].Machine Learning,1995,20(3):273-297. 被引量:1
  • 3Burges C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167. 被引量:1
  • 4Xin Kehai,Zhang Xuegong.Editing support vector machines[C]//Proceedings of International Joint Conference on Neural Networks,Washington,USA,2001 (2):1464-1467. 被引量:1
  • 5Chang C C,Lin C J.LIBSVM:a library for support vector machines[EB/OL].(2001).http://www.csie.ntu.E du.tw/~cjlin/libsvm. 被引量:1
  • 6Borer B E,Guyon I M,Vapnik.A training algorithm for optimal margin classifiers[C]//Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory.New York:ACM Press,1992:144-152. 被引量:1
  • 7Chen R C, Chen K F. Using rough set and support vector machine for network intrusion detection[J]. Int J of Network Security & Its Application, 2009, 1(1): 1-12. 被引量:1
  • 8Jayadeva, Khemchandai R. Twin support vector machines for pattern classification[J]. IEEE Trans on Pattem Analysis and Machine Intelligence, 2007, 29(5): 905-910. 被引量:1
  • 9Fung G, Mangasarian O L. Proximal support vector machine classifier[C]. KDD-2001. New York: Association for Computing Machinery, 2001: 77-86. 被引量:1
  • 10Freund Y, Schapire R E. A decision theoretic generalization of on-line learning and an application to boosting[J]. J of Computer and System Sciences, 1997, 55(1): 119-139. 被引量:1

共引文献33

同被引文献42

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部