期刊文献+

一种改进型近邻置信向量机技术分析

Analysis on Technique of an Improved Neighbor Confidence Support Vector Machine
下载PDF
导出
摘要 由于置信向量机运算大、分类速度慢导致其应用价值有限,需要对其进行改进。详细分析了近邻置信向量机所使用的基本技术,论述了近邻置信向量机使用的奇异检测函数和分类方法,并将其与基本置信向量机进行了对比。给出了近邻置信向量机的具体实施步骤。通过试验证明解决了置信向量机运算量大的问题,提高了分类速度。 The confidence support vector machine should be improved because of its much computing, slow classification speed and limited application value. This paper analyzes in detail basic technique used in nearest neighbor confidence support vector machine (NNCSVM), and discusses oddity detecting function and classification method adopted in NNCSVM, compares NNCSVM to original confidence support vector machine, and presents typical implementation steps of NNCSVM. The experiment results show that this technique can decrease computing amount of confidence support vector machine and increase its classification speed.
出处 《计算机与网络》 2010年第3期83-85,共3页 Computer & Network
关键词 置信向量机 置信度 可靠性 近邻置信向量机 confidence support vector machine confidence reliability nearest neighbor confidence support vector machine
  • 相关文献

参考文献4

二级参考文献33

  • 1张敏贵,潘泉,张洪才,姜睿.基于支持向量机的人脸分类[J].计算机工程,2004,30(11):110-112. 被引量:16
  • 2陈振洲,李磊,姚正安.基于SVM的特征加权KNN算法[J].中山大学学报(自然科学版),2005,44(1):17-20. 被引量:52
  • 3冯学军,赵琴.径向基神经网络在股市预测中的应用[J].安庆师范学院学报(自然科学版),2005,11(1):29-31. 被引量:10
  • 4周辉仁,郑丕谔,赵春秀.基于遗传算法的LS-SVM参数优选及其在经济预测中的应用[J].计算机应用,2007,27(6):1418-1419. 被引量:16
  • 5X F Lin, X Q Ding, M Chen, et al. Adaptive confidence transform based classifier combination for Chinese character recognition. Pattern Recognition Letters, 1998, 19(10): 975~988 被引量:1
  • 6T K Ho, J J Hull, S N Srihari. Decision combination in multiple classifier systems. IEEE Trans on Pattern Analysis and Machine Intelligence, 1994, 16(1): 66~75 被引量:1
  • 7A Gelman, J B Carlin, H S Stern, et al. Bayesian Data Analysis. London: Chapman & Hall, 1995 被引量:1
  • 8T Melluish, C Saunders, I Nouretdinov, et al. Comparing the Bayes and typicalness frameworks. The 12th European Conf on Machine Learning/5th European Conf on Principles and Practice of Knowledge Discovery in Databases. Freiburg, Germany, 2001 被引量:1
  • 9M D Richard, R P Lippmann. Neural network classifiers estimate Bayesian a posterior probabilities. Neural Computation, 1991, 3(4): 461~483 被引量:1
  • 10C L Liu, M Nakagawa. Precise candidate selection for large character set recognition by confidence evaluation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(6): 636~642 被引量:1

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部