期刊文献+

非参数频响函数辨识的约束局部多项式法 被引量:1

CONSTRAINED LOCAL POLYNOMIAL METHOD FOR NONPARAMETRIC FREQUENCY RESPONSE FUNCTION IDENTIFICATION
原文传递
导出
摘要 对于线性系统中频响函数的估计问题,文章提出一种新的非参数辨识法-局部多项式法.与其它基于加窗策略的非参数辨识法相比较可知,在不使用周期输入激励信号下,局部多项式法在应用离散傅里叶变换时可有效地降低泄露误差的影响.将频响函数和泄露项围绕某中心频率处的窄窗展开成两个局部多项式模型,局部参数的估计可通过多个局部最小二乘问题来求解.当考虑相邻频率处多项式系数间的约束时,对局部多项式法做改进得到约束局部多项式法.改进后的约束局部多项式法通过多目标最小二乘准则来求解,并可降低频响函数估计的均方误差.最后用仿真算例验证文章辨识方法的有效性. Here we propose a new nonparametric identification method which is called the local polynomial method to solve the problem of estimating the frequency response function in the linear system. Compared with other nonparametric identification methods based on the windowing strategies, this new identification method can be remarkably efficient in reducing the effect caused by the leakage error when the discrete Fourier transform is used under non period input excited signal. Considering the constraints between the coefficients of the polynomials at neighbor frequencies, we modify the proposed local polynomial method to get one constrained local polynomial method. The modified local polynomial method reduces the mean square error about the frequency response function and the estimation of the frequency response func- tion is identified by one multi-objective least squares criterion. Finally, the simulation example results confirm the identification theoretical results.
作者 王建宏 熊朝华 许莺 徐欣 WANG Jianhong XIONG Zhaohua XU Ying XU Xin(Science and Technology on Information Systems Engineering Laboratory, Nanjing 210007)
出处 《系统科学与数学》 CSCD 北大核心 2016年第11期1815-1824,共10页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(61402426)资助课题
关键词 频响函数 非参数辨识 局部多项式法 误差分析 Frequency response function, nonparametric identification, local poly-nomial methods, error analysis.
  • 相关文献

参考文献2

二级参考文献18

  • 1王建宏.基于先进辨识的控制策略研究及其应用[D].南京:南京航空航天大学,2010:13-18. 被引量:4
  • 2Pintelon R, Schoukens J. System identification: a frequency domain approach [ M]. New York: IEEE Press, 2001. 被引量:1
  • 3Soderstorn T, Mossberg M. Accuracy analysis of a covariance matching approach for identify errors in variables systems [ J]. Automatica, 2011,47( 1 ) : 272 - 282. 被引量:1
  • 4Pintelon R, Schoukens J. Frequency domain maximum likelihood estimation of linear dynamic errors-in-variables models[J]. Automatica, 2007, 43(2) : 621 -630. 被引量:1
  • 5Pillonetto G. A new kernel based approach for linear system identification[ J]. Automatiea, 2010, 46( 1 ) : 81 -93. 被引量:1
  • 6Pacletti S. On the input-output representation of piecewise affine state space models [ J ]. IEEE Transactions of Automatic Control, 2010, 55 ( 1 ) : 60 - 73. 被引量:1
  • 7Hjalmarssion H. A geometric approach to variance analysis in system identification [ J ]. IEEE Transactions of Automatic Control, 2011, 56(5) : 983 -997. 被引量:1
  • 8Martensson J. Conditions when minimum variance control is the optimal experiment for identifying a minimum variance control[ J ]. Automatica, 2011,47 ( 3 ) : 578 - 583. 被引量:1
  • 9Zeilinge M. Real-time suboptimal model predictive control using a combination of explicit MPC and online optimization [ J ]. IEEE Transactions of Automatic Control, 2011, 56 (7) : 1524 - 1534. 被引量:1
  • 10Augero J C. A virtual closed loop method for closed loop identification [ J ]. Automatica, 2011,47 ( 8 ) : 1626 - 1637. 被引量:1

共引文献3

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部