摘要
为探索提高BP神经网络在建设用地规模预测中的精度,提出主成分分析(PCA)和BP神经网络相结合的建设用地规模预测模型,并利用PCA-BP模型对山西省晋城市建设用地规模进行预测。首先,利用Pearson相关系数法分析筛选出影响建设用地规模的主要驱动因子;其次,利用主成分分析法(PCA)消除其相关性,并达到降维的目的;最后,以PCA结果作为输入层建立建设用地规模的BP神经网络模型,并利用BP模型进行训练预测,得到最终预测值。预测结果表明,PCA-BP模型的平均绝对误差MAE、平均相对误差MRE、均方误差MSE比传统BP神经网络模型小,平均预测精度R更高,具有较高的拟合度及可行性,在预测效率和预测精度方面都有进一步的改善。该方法的提出能为今后科学合理预测建设用地规模提供一种新思路,同时为土地利用总体规划修编提供重要决策基础。
出处
《江苏农业科学》
北大核心
2017年第1期246-249,共4页
Jiangsu Agricultural Sciences
基金
国土资源部公益性行业科研专项(编号:201411007)