摘要
利用分析方法和矩阵方法,解决了利用Wronski行列式与Liouvill公式处理特征值与特征函数渐进展开时遇到的困难.在一般耦合边界条件{(y(b)(py′)(b))=e^(iθ)K(y(a)(py′)(a))下,满足条件k_(12)=k_(21)=0时,给出了所讨论问题的特征值与特征函数的渐近展开.
The problems in dealing with the asymptotic expansion of eigenvalue and eigenfunetion by using Wronski det and Liouvill formula are solved through the combination of analytical and matrix methods. The eigenvalue of the problems discussed and the asymptotic expansion of eigenvalue and eigenfunction are offered under the coupled boundary condition {(y(b)(py′)(b))=e^iθK(y(a)(py′)(a)) in which a certain condition k12 =k21 =0 is satisfied.
出处
《内蒙古师范大学学报(自然科学汉文版)》
CAS
北大核心
2016年第6期749-752,756,共5页
Journal of Inner Mongolia Normal University(Natural Science Edition)
基金
内蒙古自治区高等学校科学研究项目(NJZY259)