期刊文献+

Wronskian Form Solutions for a Variable Coefficient Kadomtsev-Petviashvili Equation

Wronskian Form Solutions for a Variable Coefficient Kadomtsev-Petviashvili Equation
原文传递
导出
摘要 Starting from a simple transformation, and with the aid of symbolic computation, we establish the relationship between the solution of a generalized variable coefficient Kadomtsev–Petviashvili(vKP) equation and the solution of a system of linear partial differential equations. According to this relation, we obtain Wronskian form solutions of the vKP equation, and further present N-soliton-like solutions for some degenerated forms of the vKP equation. Moreover,we also discuss the influences of arbitrary constants on the soliton and N-soliton solutions of the KPII equation.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第3期339-343,共5页 理论物理通讯(英文版)
基金 Supported by the Fundamental Research Funds for the Central Universities under Grant No. BUPT2013RC0902
关键词 variable coefficient KP equation wronsian form solution multi-soliton-like solution symboliccomputation 广义变系数 方程组 Wronski行列式 N-孤子解 线性偏微分方程 表单 KP方程 符号计算
  • 相关文献

参考文献20

  • 1B.B. Kadomtsev and V.I. Petviashvili, Sov. Phys. Dokl. 15 (1970) 539. 被引量:1
  • 2Z.N. Zhu, Phys. Lett. A 182 (1993) 277. 被引量:1
  • 3W.L. Chan, K.S. Li, and Y.S. Li, J. Math. Phys. 33 (1992) 3759. 被引量:1
  • 4G.M. Wei, Y.T. Gao, T. Xu, X.H. Meng, and C.Y. Zhang,Chin. Phys. Lett. 25 (2008) 1599. 被引量:1
  • 5N.C. Freeman and J.J.C. Nimmo, Phys. Lett. A 95 (1983) 1. 被引量:1
  • 6W.X. Ma and Y. You, Trans. Amer. Math. Soc. 357 (2005) 1753. 被引量:1
  • 7W.X. Ma and K. Maruno, Phys. A 343 (2004) 219. 被引量:1
  • 8Y.Y. Sun and D.J. Zhang, Commun. Theor. Phys. 57 (2012) 923. 被引量:1
  • 9F.C. You and J. Zhang, Commun. Theor. Phys. 56 (2011) 11. 被引量:1
  • 10Y. Zheng, F.F. Cheng, D.J. Ding, and X.L. Dang, Com- mun. Theor. Phys. 55 (2011) 20. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部