期刊文献+

一种改进CB模型的彩色图像混合噪声去除方法 被引量:3

A Method for Removing Mixed Noise of Color Image by Improving CB Model
下载PDF
导出
摘要 将分数阶偏微分理论和CB模型相结合应用于彩色图像混合噪声去除。对于添加混合噪声的彩色图像,首先,利用MCM模型去除图像中的椒盐噪声,然后将处理后的彩色图像分解为色度C和亮度B两部分,用分数阶偏微分模型处理亮度B,而对于色度C,由于其受到单位长度的限制,在处理时非常困难,因此,在角度域中平滑色度C,这样可以避免计算时的困难,并能够提高平滑的效率,然后将处理后的亮度B和色度C合成为新的彩色图像。最后通过实验证明了该方法的有效性。 Combing fractional-order differential theory with Chromaticity-Brightness(CB)model,in order to deal with the mixture of the salt pepper and Gaussian noises,a novel color image denoising model is proposed.For a color image with mixed noises,the salt pepper noise can be eliminated by the MCM model effectively.Then,the processed color image is decomposed into chromaticity component and brightness component.Secondly,fractional-order differential model is used for brightness component.The chromaticity component will be smoothed in angle domain to avoid the difficulty and to improve efficiency.Thirdly,the retorted image is got by multiplying the recovered chromaticity with recovered brightness.Finally,we proved the validity of the proposed model through the experiment.
作者 周千 李文胜
出处 《计算机与数字工程》 2017年第1期147-151,共5页 Computer & Digital Engineering
基金 陕西省教育厅专项科研计划项目(编号:15JK1379) 西安航空学院科研基金资助项目(编号:2016KY1214 2014KY1210)资助
关键词 彩色图像去噪 分数阶偏微分方程 CB模型 角度域 color image denoising fractional-order differential equation CB color model angle domain
  • 相关文献

参考文献9

二级参考文献93

  • 1刘祝华,邹道文,邓承志,汪胜前.一种新的基于噪声点检测的脉冲噪声去噪算法[J].计算机工程与应用,2005,41(15):41-43. 被引量:5
  • 2PERONA P, MALIK J. Scale-space and edge detection using aniso- tropic diffusion [ J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 1990, 12(7) : 629 -639. 被引量:1
  • 3YOU Y L, XU W, TANNENBAUM A, et al. Behavioral analysis of an isotropie diffusion in image processing [ J]. IEEE Transactions on Image Processing, 1996, 5(11) : 1539 - 1553. 被引量:1
  • 4KACUR J, MIKULA K. Slow and fast diffusion effects in image pro- cessing [J]. Computing and Visualization in Science, 2001, 3(4): 185 - 195. 被引量:1
  • 5RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [ J]. Physica D, 1992, 60(1/4): 259 -268. 被引量:1
  • 6RUDIN L, OSHER S, FATEMI E. Nonlinear total varia- tion based noise removal algorithms [ J ]. Physica D, 1992,60:259 - 268. 被引量:1
  • 7CHAMBOLLE A, LIONS P L. Image recovery via total variation minimization and related problems [ J ]. Number Math, 1997,76 (2) : 167 - 188. 被引量:1
  • 8LYSAKER M, LUNDERVOLD A, TAI X C. Noise remov- al using fourth - order partial differential equation with ap- plications to medical magnetic resonance images in space and time [ J ]. IEEE Transactions on Image Processing, 2003, 12(12) :1 579 -1 590. 被引量:1
  • 9YOU Y L, KAVEH M. Fourth -order partial differential equation for noise removal [J]. IEEE Transactions on Im- age Processing,2000,9(10) :1 723 -1 730. 被引量:1
  • 10LYSAKER M, OSHER S, TAI X C. Noise removal using smoothed normals and surface fitting [ J ]. IEEE Transac- tions on Image Processing, 2004,13 (10) :1 345 -1 357. 被引量:1

共引文献109

同被引文献26

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部