期刊文献+

先验形状约束的水平集分割模型 被引量:1

Level Set Segmentation Model Based on Prior Shape Knowledge
下载PDF
导出
摘要 传统C-V模型只利用了图像的灰度信息,分割精度不高。本文凭借水平集理论在拓扑结构优化及形状建模方面的优势,以普遍类型的规则建筑物为例,研究如何将人的先验知识融合至水平集框架中,并提出先验形状约束的建筑物目标分割模型,以改善高分辨率遥感影像中建筑物受干扰情况下分割的完整性及准确性。试验证明,该模型分割结果较C-V模型有很大提高,基本能保持与eCognition多尺度分割相近的精度。
出处 《测绘通报》 CSCD 北大核心 2013年第6期31-34,58,共5页 Bulletin of Surveying and Mapping
  • 相关文献

参考文献11

  • 1MUMFORD D, SHAH J. Optimal Approximotion hy Piecewise Smooth Function and Associated Varitional Problems[J]. Communications on Pure and Applied Mathematics, 1989, 42(5) :577-685. 被引量:1
  • 2VESE L A, CHANT F. A Muhiphase Level Set Frame-work for Image Segmentation Using the Mumford and Shah Model [ J ]. International Journal of Computer Vision, 2000, 50(3):271-293. 被引量:1
  • 3KEATON T, BROKISH J. A Level Set Method for the Extraction of Roads from Multispectral hnagery[ C ]//Applied Imagery Pattern Recognition Workshop. Malibu: [s. n. ] ,2002:141-147. 被引量:1
  • 4NIU X T. A Semi-auto,natic Framework for ttighway Extraction and Vehicle Detection Based on a Geometric Deformable Model [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006(61):170-186. 被引量:1
  • 5杨耘,马洪超,林颖,邬建伟.多水平集演化的高分辨率遥感影像分割[J].武汉大学学报(信息科学版),2008,33(6):588-591. 被引量:13
  • 6BAILLOEUL T. Active Contours and Prior Knowledge for Change Analysis: Application to Digital Urban Building Map Updating from Optical High Resolution Remote Sensing Images [EB/OL]. 2005-08-15. http:// kepler, ia. ae. cn/profile/timothee. 被引量:1
  • 7田昊,杨剑,汪彦明,李国辉.基于先验形状约束水平集模型的建筑物提取方法[J].自动化学报,2010,36(11):1502-1511. 被引量:27
  • 8杨新..图像偏微分方程的原理与应用[M],2003.
  • 9杨耘.水平集框架下高分辨率遥感影像分类研究[D].武汉:武汉大学,2008. 被引量:2
  • 10蒋伟.基于分数阶偏微分方程的图像去噪新模型[J].计算机应用,2011,31(3):753-756. 被引量:16

二级参考文献24

  • 1PERONA P, MALIK J. Scale-space and edge detection using aniso- tropic diffusion [ J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 1990, 12(7) : 629 -639. 被引量:1
  • 2YOU Y L, XU W, TANNENBAUM A, et al. Behavioral analysis of an isotropie diffusion in image processing [ J]. IEEE Transactions on Image Processing, 1996, 5(11) : 1539 - 1553. 被引量:1
  • 3KACUR J, MIKULA K. Slow and fast diffusion effects in image pro- cessing [J]. Computing and Visualization in Science, 2001, 3(4): 185 - 195. 被引量:1
  • 4RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [ J]. Physica D, 1992, 60(1/4): 259 -268. 被引量:1
  • 5Osher S, Sethian J A. Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations[J]. Journal of Computational Physics, 1988, 79:12-49. 被引量:1
  • 6Osher S, Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces[M]. New York: Springer Verlag, 2003. 被引量:1
  • 7Vese L, Chan T F. A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model[J]. International Journal of Computer Vision, 2002, 50(3) :271-293. 被引量:1
  • 8Zhao Hongkai, Chan T F, Merriman B, et al. Variational Level Set Approach to Multiphase Motion [J]. Journal of Computational Physics, 1996, 167:179-195. 被引量:1
  • 9Tai Xuecheng, Chan T F. A Survey on Multiple Level Set Methods with Applications for Identifying Piecewise Constant Functions[ J]. International Journal of Numerical Analysis and Modeling, 2004,1(1):25-47. 被引量:1
  • 10Mansouri A R, Mitiche A, Va' zquez C. Multiregion Competition: a Level Set Extension of Region Competition to Multiple Region Image Partitioning [J]. Computer Vision and Image Understanding, 2006,101 : 137-150. 被引量:1

共引文献53

同被引文献12

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部