期刊文献+

基于降噪自动编码器及其改进模型的微博情感分析 被引量:12

Sentiment analysis of micro-blogging based on DAE and its improved model
下载PDF
导出
摘要 随着自然语言处理科学的迅猛发展,情感分析作为其重要的一个分支广泛应用于社交网络平台上,尤其是微博由于其传播广泛且蕴涵丰富的情感信息而备受学者青睐。为解析微博中表达的情感信息以及深入挖掘其蕴涵的潜在感情,在降噪自动编码器的深度模型之上研究探索改进了这个深度学习模型。降噪自动编码器的工作特点是在引入噪声的干扰之下实现对原始输入的还原,而其改进模型的优势在于考虑到了噪声的多样性和复杂性,并通过深度学习训练加强模型的原始特征复原能力,以此来克服不可预判的原始输入噪声。通过分别使用SVM、降噪自动编码器模型以及改进的模型进行情感分析实验,对比分类效果而得出改进的深度模型对微博文字情感把握更准确而且抗干扰能力及鲁棒性有所提升的结论。 With the rapidly development of natural language processing science, sentiment analysis as one of its important branches are widely used in social network platform. Especially the micro-blogging which are wide dissemination and contains a wealth of information on the emotional and highly favored by scholars. Due to the micro-blogging widely spread and contains rich human emotional information, it quickly become the research object of the Chinese and foreign scholars. To analysis the ex- pression of human emotion in the micro-blogging and even digging its inherent sentiment, this paper made a further on the de- noising auto-encoder(DAE) model and explored a new method to improve it. The characteristics of DAE was to achieve the re- duction of the original input under the interference of noise,while the advantage of the new model were take into account the diversity and complexity of noise, and to strengthen the resilience of the original features of the model through the deep learning training,then the result was overcame the original input noise which could not prediction. At last, by separately using SVM, DAE model and the improved model made sentiment analysis experiment, comparing the classification results indicate that the improved model(IDAE) are more accurate in micro-blogging sentiment analysis. Moreover,its anti-interference ability and ro- bustness has improved.
出处 《计算机应用研究》 CSCD 北大核心 2017年第2期373-377,共5页 Application Research of Computers
关键词 降噪自动编码器 微博 情感分析 深度学习 denoising auto-encoder micro-blogging sentiment analysis deep learning
  • 相关文献

参考文献7

二级参考文献75

  • 1陈笑蓉,秦进.基于最大熵原理的汉语词义消歧[J].计算机科学,2005,32(5):174-176. 被引量:7
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3马忠宝,刘冠蓉.基于支持向量机的中文文本分类模型研究[J].计算机技术与发展,2006,16(11):70-72. 被引量:4
  • 4董梅,胡学钢.基于多特征选择的中文文本分类[J].计算机技术与发展,2007,17(7):117-119. 被引量:11
  • 5Pang Bo, Lee Lillian, Vaithyanathan S. Thumbs up Sentiment classification using machine Learning rechniques[C]//In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing(EMNIJP). NJ, USA: Asscciation for Computational Linguistics Morristown, 2002: 79 - 86. 被引量:1
  • 6Lin Wei - Hao, Wilson T, Wiebe J, et al. Which side are you on? Identifying Perspectives at the Document and Sentence Levels[C]//In : Proceedings of the lOth Conference on Computational Natural Language Leaming(CoNLLX). New York: [s. n. ] ,2006:109 - 116. 被引量:1
  • 7Lan Man,Tan Chew- Lim,Low Hwee- Boon,et al.A Comparative study on Term Weighting Schemes for Text Categorization with support vector machines [C]//Intemational World Wide Web Conference. New York, NY, USA: [ s. n. ], 2005 : 1032 - 1033. 被引量:1
  • 8M.Q. Hu, B. Liu. Mining and Summarizing Custom- er Reviews[C]//ACM SIGKDD 2004.. 168-177. 被引量:1
  • 9Bo Pang, Lillian Lee. Opinion mining and sentiment a- nalysis[C]//Foundations and Trends in Information Retrieval, 2(1-2):1-135. 被引量:1
  • 10M.Q. Hu, B. Liu. Opinion Extraction and Summari- zation on the Web[C]//AAAI06, Boston: 1621-1624. 被引量:1

共引文献436

同被引文献125

引证文献12

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部